
An FPGA-Based System for Tracking Digital Information

Transmitted Via Peer-to-Peer Protocols

THESIS

Karl R. Schrader, Major, USAF

AFIT/GCE/ENG/09-10

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCE/ENG/09-10

An FPGA-Based System for Tracking Digital Information

Transmitted Via Peer-to-Peer Protocols

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Karl R. Schrader, BSEE, MAS

Major, USAF

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Dr. Barry lullins (Chairman) date

date

ANT/GCE/ENG/09-1

AN FPGA-BASED SYSTEM FOR TRACKING DIGITAL INFORMATION

TRANSMITTED VIA PEER-TO-PEER PROTOCOLS

Karl R. Schrader, BSEE, 1\4AS

Major, USAF

Approved:

Dr. Gilbert L. Peterson (Member)

Dr. Robert F. Mills (Member)

/ 2 Fe l „'	 9
date

AFIT/GCE/ENG/09-10

Abstract

This thesis addresses the problem of identifying and tracking digital information

that is shared using peer-to-peer file transfer and Voice over IP (VoIP) protocols. The

goal of the research is to develop a system for detecting and tracking the illicit dissem-

ination of sensitive government information using file sharing applications within a

target network, and tracking terrorist cells or criminal organizations that are covertly

communicating using VoIP applications.

A digital forensic tool is developed using an FPGA-based embedded software

application. The tool is designed to process file transfers using the BitTorrent peer-to-

peer protocol and VoIP phone calls made using the Session Initiation Protocol (SIP).

The tool searches a network for selected peer-to-peer control messages using payload

analysis and compares the unique identifier of the file being shared or phone number

being used against a list of known contraband files or phone numbers. If the identifier

is found on the list, the control packet is added to a log file for later forensic analysis.

Results show that the FPGA tool processes peer-to-peer packets of interest

92% faster than a software-only configuration and is 99.0% accurate at capturing and

processing BitTorrent Handshake messages under a network traffic load of at least 89.6

Mbps. When SIP is added to the system, the probability of intercept for BitTorrent

Handshake messages remains at 99.0% and the probability of intercept for SIP control

packets is 97.6% under a network traffic load of at least 89.6 Mbps, demonstrating that

the tool can be expanded to process additional peer-to-peer protocols with minimal

impact on overall performance.

iv

Acknowledgements

I would like to thank my thesis adviser, Dr. Barry Mullins, for providing the

right balance of guidance to keep me on track and freedom to explore my ideas and

bring them to fruition. In addition, I would also like to thank Dr. Gilbert Peterson

and Dr. Robert Mills for their support and assistance.

I greatly appreciate the help of Major David Olander, whose insight and assis-

tance made the process of learning how to program and implement the experimental

system a less painful experience. I would also like to thank Captain Benjamin Ramsey

for reminding me that Voice over IP is also a peer-to-peer protocol.

Finally, I would be remiss without thanking my wife. Her continuous support

and understanding were priceless throughout this process.

Karl R. Schrader

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

Table of Contents . vi

List of Figures . xi

List of Tables . xiii

List of Abbreviations . xv

I. Introduction . 1
1.1 Motivation . 1
1.2 Overview and Goals . 2
1.3 Thesis Layout . 3

II. Literature Review and Related Research 5
2.1 Background On the Use of Peer-to-Peer Traffic 5

2.1.1 The Rise and Fall of Napster 5

2.1.2 The Rise of Decentralized Peer-to-Peer Systems 7

2.1.3 Statistics on P2P Traffic Usage on the Internet . 8

2.2 Current Methods of Identifying Downloaders of Illegal Files 9

2.2.1 Honeypots . 10

2.2.2 Hardware Recovery of Illegal Files 13

2.2.3 The BitTorrent Monitoring System 15

2.2.4 The CopyRouter Peer-to-Peer Tracking System 17

2.3 Traditional Methods for Classifying Network Traffic . . . 20

2.3.1 Socket-Layer / Port Matching 20

2.3.2 Application-Layer / Payload Analysis 21

2.3.3 Transport-Layer / Statistical Identification and
Analysis . 25

2.4 Non-Traditional Methods for Classifying Network Traffic 27

2.4.1 Markovian Signature-Based Classification 27

2.4.2 Discreteness of Remote Hosts 28
2.4.3 Clustering Algorithms 28

2.4.4 Flow Records 29
2.5 Obfuscation of Peer-to-Peer Traffic 31

vi

Page

2.5.1 Byte Padding 32

2.5.2 Encryption . 32

2.5.3 Tunneling . 33

2.6 Summary . 33

III. The BitTorrent Peer-to-Peer Networking Protocol 35

3.1 Overview of How BitTorrent Works 35
3.1.1 The Purpose of BitTorrent 36

3.1.2 Downloading a File Using BitTorrent 36

3.1.3 An Example of the Power of the Swarm 37

3.2 Terminology . 38

3.2.1 Torrent . 38
3.2.2 Peers and Swarms 38
3.2.3 Seeders and Downloaders 38
3.2.4 Leeches and Lurkers 39
3.2.5 Trackers . 39
3.2.6 Blocks versus Pieces 39

3.3 Bencoding . 39

3.3.1 Encoding Integers 40

3.3.2 Encoding Strings 40

3.3.3 Encoding Lists 40

3.3.4 Encoding Dictionaries 41

3.4 The SHA-1 Hash . 41
3.4.1 Creating a Message Digest 41

3.4.2 Security of the SHA-1 Standard 42

3.4.3 Use of the SHA-1 Hash in BitTorrent 43
3.5 The .torrent File . 43

3.5.1 Contents of the .torrent File 44
3.5.2 Example of a .torrent File 44

3.5.3 Computing the Information Dictionary Hash Value 46

3.6 The Tracker Protocol . 47
3.6.1 The File GET Request 47

3.6.2 The Tracker Response 48

3.6.3 Tracker Request and Response Example 49

3.7 The Peer Wire Protocol 51
3.7.1 The Handshake 52
3.7.2 Other Messages 53

3.8 Summary . 54

vii

Page

IV. The Session Initiation Protocol 55
4.1 Overview of How SIP Works 55

4.1.1 The Purpose of SIP 55

4.1.2 Making a VoIP Call Using SIP 56

4.2 Terminology . 57

4.2.1 Call . 58
4.2.2 Message . 58

4.2.3 Proxy Server 58

4.2.4 Registrar Server 58

4.2.5 Requests and Responses 58

4.2.6 SIP Uniform Resource Identifier 58
4.3 SIP Messages . 59

4.3.1 Request Messages 59

4.3.2 Response Messages 63

4.4 Summary . 64

V. Methodology . 65

5.1 Problem Definition . 65
5.1.1 Goals and Hypotheses 65

5.1.2 Approach . 66

5.2 System Boundaries . 69

5.3 System Services . 70

5.4 Workload . 71
5.4.1 BitTorrent and SIP Packets Employed 71

5.4.2 The Non-Peer-to-Peer Traffic Load 75
5.5 Performance Metrics . 75
5.6 Parameters . 76

5.6.1 System Parameters 76

5.6.2 Workload Parameters 77
5.7 Factors . 78

5.7.1 Configuration 78

5.7.2 Packet Type . 81

5.8 Evaluation Technique and Environment 81

5.8.1 Experimental Environment 81

5.8.2 Evaluation Techniques 83

5.9 Experimental Design . 86

5.9.1 Experiment 1: Finding an Optimal Configuration 86

5.9.2 Experiment 2: Expanding the System 87

5.10 Analysis and Interpretation of Results 87

5.10.1 Experiment 1: Finding an Optimal Configuration 87

viii

Page

5.10.2 Experiment 2: Expanding the System 89

5.11 Summary . 90

VI. Results and Analysis . 91

6.1 Results and Analysis of Experiment 1 91

6.1.1 Test 1: Calculating Packet Processing Time . . 91

6.1.2 Test 2: Calculating Probability of Intercept Un-
der a Non-Peer-to-Peer Load 97

6.1.3 Test 3: Calculating Probability of Intercept Un-
der an All-Peer-to-Peer Load 100

6.1.4 Experiment 1 Analysis 102

6.2 Results and Analysis of Experiment 2 107

6.2.1 Test 1: Calculating Packet Processing Time . . 107

6.2.2 Test 2: Calculating Probability of Intercept Un-
der a Non-Peer-to-Peer Load 109

6.2.3 Test 3: Calculating Probability of Intercept Un-
der an All-Peer-to-Peer Load 110

6.2.4 Experiment 2 Analysis 112

6.3 Overall Analysis . 114

6.3.1 Analysis of Packet Processing Time 114

6.3.2 Analysis of Probability of Packet Intercept Under
Load . 115

6.4 Summary . 118

VII. Conclusions . 119
7.1 Conclusions of Research 119

7.1.1 Goal #1: Construct the TRAPP System 119

7.1.2 Goal #2: Optimize the System 119

7.1.3 Goal #3: Expand the System 120

7.2 Significance of Research 121

7.3 Recommendations for Future Research 122

Appendix A. Constructing the System Hardware 124

A.1 Hardware Description 124

A.1.1 Block RAM . 124
A.1.2 XPS EthernetLite Controller 125
A.1.3 System ACE Controller 125

A.1.4 RS232 UART / General Purpose IO Interfaces . 125

A.1.5 Custom Hardware Clock 126
A.2 Configuring Components on the Virtex FPGA Board . . 126

A.3 Modifying the Ethernet Controller 133

A.4 Creating the System Clock 135

ix

Page

Appendix B. Experimental Data . 138

B.1 Results of Testing for the BitTorrent Protocol 139

B.1.1 Non-BitTorrent Packets 139
B.1.2 Packets with File Info Hash Not On the List . . 140
B.1.3 Packets with File Info Hash On the List 141

B.2 Results of Testing Incorporating BitTorrent and SIP . . 142

Bibliography . 143

x

List of Figures
Figure Page

1.1. The Proposed TRAPP System 4

2.1. How to Download a File Using the Napster Network 6

2.2. How to Download a File Using the Gnutella Network 8

2.3. Peer-to-peer Networking as a Percentage of Total Internet Traffic

[The06] . 9

2.4. How Honeypot Agents and the Platform Manager Interact to De-

tect and Track Illegal File Downloaders (Adapted from [BSCF07]) 11

2.5. The File Marshal Forensic Software Investigation Process [AJ07] 14

2.6. The BitTorrent Monitoring System Process [CCM+07] 16

2.7. How the CopyRouter System Works 18

2.8. Example of a Bipartite Cluster of Network Hosts [KPF05] . . . 30

2.9. Transport Layer Interactions for Various Applications [KPF05] 31

3.1. How the BitTorrent Protocol Works 37

3.2. How a Round in the SHA-1 Hashing Algorithm Works [MRR08] 42

4.1. How the Session Initiation Protocol Works 57

5.1. Packet Data Flow through the TRAPP System 67

5.2. Experiments and Tests Used to Achieve the Research Goals . . 68

5.3. The TRAPP Forensic Tool System 70

5.4. Block Diagram of the Experimental Setup 82

5.5. Experimental Setup for the Three Performance Tests 83

6.1. Interval Plots of Packet Processing Times for Non-BitTorrent

Packets . 93

6.2. Interval Plots of Packet Processing Times for BitTorrent Packets

Not On the List . 95

6.3. Interval Plots of Packet Processing Times for BitTorrent Packets

On the List . 97

xi

Figure Page

6.4. Interval Plots of Probability of Intercept for a BitTorrent Packet

Under a Non-Peer-to-Peer Workload 99

6.5. Interval Plots of Probability of Intercept for a BitTorrent Packet

Under an All-Peer-to-Peer Workload 101

6.6. Interval Plots of Packet Processing Times for SIP and BitTorrent

Packets . 108

6.7. Interval Plots of Probability of Intercept for BitTorrent and SIP

Packets Under a Non-Peer-to-Peer Workload 110

6.8. Interval Plots of Probability of Intercept for BitTorrent and SIP

Packets Under an All-Peer-to-Peer Workload 112

A.1. Hardware Design Block Diagram 125

A.2. The Project Creation Options Window 126

A.3. The Project Creation and Repository Selection Window 127

A.4. The Select Board Window . 128

A.5. The Configure PowerPC Processor Window 129

A.6. The Configure IO Interfaces (1 of 2) Window 130

A.7. The Configure IO Interfaces (2 of 2) Window 131

A.8. The Add Internal Peripherals Window 132

A.9. The Software Setup Window 133

xii

List of Tables
Table Page

2.1. Common TCP Port Numbers Used by P2P Applications [Spe08] 20

4.1. Status Codes for SIP Response Messages [RFC02] 63

5.1. Factor Levels for Experiment 1 78

5.2. Factor Levels for Experiment 2 78

6.1. Packet Processing Times for Non-BitTorrent Packets 91

6.2. Packet Processing Times for BitTorrent Packets Not On the List 93

6.3. Packet Processing Times for BitTorrent Packets On the List . . 96

6.4. Probability of Packet Intercept Under a Non-Peer-to-Peer Work-

load . 98

6.5. Hypothesis Testing on Control Configuration Under a Non-Peer-

to-Peer Workload . 99

6.6. Hypothesis Testing on Combined Configuration Under a Non-

Peer-to-Peer Workload . 100

6.7. Probability of Packet Intercept Under an All-Peer-to-Peer Work-

load . 101

6.8. Hypothesis Testing on Control Configuration Under an All-Peer-

to-Peer Workload . 102

6.9. Hypothesis Testing on Combined Configuration Under an All-

Peer-to-Peer Workload . 103

6.10. Mean Packet Processing Time Comparisons to Control Configu-

ration . 103

6.11. Comparison of Probability of Packet Intercept Between Opti-

mizations and Control Configuration for a Non-Peer-to-Peer Work-

load . 104

6.12. Comparison of Probability of Packet Intercept Between Opti-

mizations and Control Configuration for an All-Peer-to-Peer Work-

load . 106

xiii

Table Page

6.13. Packet Processing Times for SIP and BitTorrent Packets Using

the Expanded System . 107

6.14. Hypothesis Testing on Expanded System (BitTorrent+SIP) ver-

sus the BitTorrent-Only System 109

6.15. Probability of Packet Intercept for BitTorrent and SIP Packets

Under a Non-Peer-to-Peer Workload 109

6.16. Observed Network Load for Various All-Peer-to-Peer Workloads 111

6.17. Probability of Packet Intercept for BitTorrent and SIP Packets

Under an All-Peer-to-Peer Workload 111

6.18. Comparison of Probability of Packet Intercept Between Non-

Peer-to-Peer and All-Peer-to-Peer Workloads 113

B.1. Processor Cycles Used to Process a Non-BitTorrent Packet . . 139

B.2. Processor Cycles Used to Process a Packet with a Hash Not On

the List . 140

B.3. Processor Cycles Used to Process a Packet with a Hash On the

List . 141

B.4. Processor Cycles Used to Process BitTorrent and SIP Packets . 142

xiv

List of Abbreviations
Abbreviation Page

P2P Peer-to-Peer . 1

VoIP Voice over IP . 1

TRAPP TRacking and Analysis for Peer-to-Peer 2

FPGA Field Programmable Gate Array 3

BTM BitTorrent Monitoring system 15

DFS Depth First Search . 15

GFR Global File Registry . 18

IANA Internet Assigned Numbers Authority 21

RHD Discreteness of Remote Hosts 28

BLINC BLINd Classification . 29

SSH Secure Shell . 33

VPN Virtual Private Network 33

SHA-1 Secure Hash Algorithm 1 41

SIP Session Initiation Protocol 55

URI Uniform Resource Identifier 58

SUT System Under Test . 69

CUT Component Under Test 70

PLB Processor Local Bus . 124

BRAM Block RAM . 124

IP Intellectual Property . 125

NTP Network Time Protocol 137

xv

An FPGA-Based System for Tracking Digital Information

Transmitted Via Peer-to-Peer Protocols

I. Introduction

1.1 Motivation

Peer-to-peer (P2P) networking has changed the way users search for, send, and

receive digital information over the Internet. Instead of relying on interactions with

centralized servers to upload and download digital content, users now share music,

movies, documents, and conversations directly with other users. While peer-to-peer

networking provides new and powerful applications for the legitimate distribution of

digital information, it is also being used for many illicit purposes as well.

One high-profile illicit use of peer-to-peer networking technology is for the dis-

semination of child pornography. The Federal Bureau of Investigation’s (FBI) Re-

gional Computer Forensics Laboratory states in its 2007 annual report that “cyber-

crime, which includes crimes against children and child pornography, is the offense for

which law enforcement requested assistance most often” [oJ08]. In addition, a 2005

Government Account Office report stated that “[Peer-to-peer] technology is increas-

ingly popular for disseminating child pornography” [Off05].

Another area in which peer-to-peer networking is being used for illegal activ-

ities is covert communication among terrorist cells through Voice over IP (VoIP)

protocols. In Afghanistan, the Taliban has begun using VoIP-based Internet phones

to coordinate attacks on Coalition forces while avoiding detection. In fact, accord-

ing to one British Government official, VoIP calls are “seriously undermining” MI6’s

ability to intercept and track Taliban communications [Owe08]. In addition, during

the December 2008 terrorist attacks in Mumbai, India, the attackers’ Pakistan-based

handlers sent instructions, intelligence, and encouragement using VoIP-based Inter-

1

net phones [Kah08]. During the 3-day series of attacks, the terrorists were able to

communicate without their calls being traced or intercepted by authorities.

To help combat these illicit uses for peer-to-peer networking, the goal of this

research is to develop a system to identify and track any type of digital informa-

tion that is transmitted on a network using peer-to-peer protocols. Several methods

have already been developed to accomplish this task and are in use today, but they

depend on the use of honeypots to lure targets into downloading contraband mate-

rial [BSCF07], physical access to the suspected file sharer’s computer [AJ07], active

searching of the Internet for contraband files to download [CCM+07], or active in-

terception and modification of contraband file sharing requests [DS08a]. All of these

methods are active attempts to discover illicit file sharing, with the drawback that

they can all be detected and possibly circumvented by file sharers that are aware

of their presence. In contrast, the system developed for this research consists of a

suite of tools that passively detects and tracks illicit file sharing on a target network

without affecting the flow of traffic on the network, making it impossible for users of

the network to determine the presence of the system.

This system is useful for law enforcement, intelligence agencies, and computer

network system administrators across the US Government. Law enforcement agencies

can use these tools to identify child pornography being transmitted across a network

and track both the sender and receiver to their sources. Intelligence agencies can use

the system to track known terrorists using VoIP technology for their communications.

System administrators can also use the tools to detect the unauthorized transmission

of sensitive files from their networks and determine the sender and recipient, thereby

identifying potential insider threats and inadvertent disclosures of sensitive informa-

tion.

1.2 Overview and Goals

This thesis focuses on designing and constructing a digital forensic tool, called

the TRacking and Analysis for Peer-to-Peer (TRAPP) system, that allows an inves-

2

tigator or system administrator to monitor network traffic in real-time for any digital

information that meets the user’s definition of contraband being shared using peer-

to-peer protocols. The TRAPP system, shown in Figure 1.1, is designed to be set up

on the gateway between a Government-owned network and the Internet. As packets

pass through the gateway, copies are sent to the system for analysis. For each packet

received, TRAPP inspects the packet to determine if it is a control packet for a peer-

to-peer protocol of interest. If the packet is not a peer-to-peer control packet, it is

discarded. If the packet is a control packet, the system extracts from the packet’s

payload the unique identifier for the data being shared, and attempts to match the

identifier against a list of files of interest in the system’s memory. If a match is not

made, the packet is discarded. If a match is made, the control packet is recorded in

a log file for future analysis.

There are three primary goals for this research. The first goal is to construct a

hardware-based system using a Field Programmable Gate Array (FPGA) that ana-

lyzes all network traffic sent to it, detects packets belonging to a specific peer-to-peer

protocol, compares the digital information being shared against a list of interest, and

in the case of a match, records selected control packets from the peer-to-peer session

in a log file. The second goal is to optimize the system to increase the probability of

detecting and recording all control packets, even when network traffic is being sent

to the system at nearly the full capacity of the system’s Ethernet controller. The

last goal is to demonstrate the system’s expandability by modifying it to accept an

additional peer-to-peer protocol with no impact on overall performance.

1.3 Thesis Layout

This chapter introduces the research topic, provides a motivation for the re-

search efforts, and outlines the goals of the research. Chapter 2 presents background

information on the types of peer-to-peer networks, related work in the area of detect-

ing illicit file sharing, methods of classifying network traffic, and ways to obfuscate

peer-to-peer traffic. The BitTorrent peer-to-peer protocol is discussed in Chapter 3,

3

Figure 1.1: The Proposed TRAPP System

and the Session Initiation Protocol is discussed in Chapter 4. Chapter 5 outlines

the methodology used to design, set up, and conduct the experiments to test the

effectiveness of the TRAPP system. Chapter 6 provides a discussion and analysis

of the experimental results. The conclusions drawn from the experimental results,

the significance of the completed TRAPP system, and areas for future research are

given in Chapter 7. Appendix A describes how to construct the hardware portion

of the TRAPP system, and Appendix B contains the raw data collected during the

experiments.

4

II. Literature Review and Related Research

This chapter presents an overview of background information and related re-

search on peer-to-peer protocols, detection of illicit file sharing, Internet traffic

classification, and peer-to-peer traffic obfuscation techniques. Section 2.1 provides

historical background on several popular peer-to-peer network protocols. Related

research in the area of identifying and tracking illegal file downloaders is presented

in Section 2.2. Sections 2.3 and 2.4 detail traditional methods and recent work on

nontraditional methods of classifying Internet traffic. Section 2.5 outlines the cur-

rent methods of obfuscating and encrypting peer-to-peer traffic, and the chapter is

summarized in Section 2.6.

2.1 Background On the Use of Peer-to-Peer Traffic

Prior to 1999, the Internet was primarily used for World Wide Web surfing,

email, and FTP file transfers [The06]. Then, a new method of transferring files quickly

and easily, called peer-to-peer networking, was introduced. Since then, peer-to-peer

networking has steadily grown in popularity and is now the dominant component of

worldwide Internet traffic [P2P07]. Described below is a short history of the rise of

peer-to-peer networking followed by some statistics on the use of peer-to-peer net-

working on the Internet.

2.1.1 The Rise and Fall of Napster. The first widely used peer-to-peer

networking service was Napster, which was created by Shawn Fanning in 1999 for

the purpose of sharing .mp3 music files [Tys08]. In the Napster architecture, users

download the Napster client, install it, and then connect to centralized servers, run

by the Napster Corporation. These servers contain a constantly-updated list of all

files currently available on client computers. When a user wants to download a file,

he queries the server for IP addresses of other peers who possess the file, and then

connects directly with a peer for the file transfer [Tys08].

5

Figure 2.1: How to Download a File Using the Napster Network

Figure 2.1 shows how the Napster system is used to download a file. As shown

in the figure, when downloading a file, the following occurs:

1. The client connects to the central cluster of Napster servers to search for a file

to download.

2. While the client is connected to the server, the server in return searches the

client for sharable files, and the client’s file directory is added to the server’s

list.

3. The server searches its indexes for files matching the client’s request. These

indexes are compiled by querying clients currently connected to the server and

retrieving their file directories.

4. The Napster server sends the client a list of peers who have the file.

6

5. The client connects to the peer that has the file and downloads it. Note that

this exchange happens without the server in the loop [Fel04].

While the Napster servers did not contain any illegal or copyrighted files, the

corporation did suffer from a serious legal vulnerability. Even though Napster did not

directly provide illegal files to clients, it did keep centralized records, under its control,

of every file being transferred. The Recording Industry Association of America and

the major music labels sued Napster, claiming that it allowed illegal activities to occur

with its full knowledge and consent. These lawsuits resulted in the closure of Napster

in 2001 [Fel04].

2.1.2 The Rise of Decentralized Peer-to-Peer Systems. In order to avoid the

legal pitfall that befell the Napster system, almost all newer peer-to-peer protocols

eliminate the centralized server model in favor of a decentralized model using super-

peers or supernodes. For example, in the Fast Track/KaZaA protocol, certain clients

are designated as supernodes or superpeers, and are responsible for maintaining and

distributing searchable lists of files. Every client possesses the software to become a

supernode, and any client can be promoted to a superpeer at any time. This allows

the corporations distributing the software to avoid lawsuits, since they now have no

knowledge of what is being shared; that information resides on the supernodes, which

are not under the control of the corporation [Fel04].

In another implementation of decentralized peer-to-peer networking, the Gnutella

protocol uses query flooding to search for and download files. Figure 2.2 shows how

the Gnutella system is used to download a file [The08]. As shown in the figure, when

downloading a file, the following occurs:

1. When a client wishes to search for a file, he sends the query to a small number

of other clients he is connected to (usually less than five), asking for a file.

2. Each of those clients then sends the query to the peers that it is connected to,

and so on, up to a maximum number of hops away from the original requester.

7

Figure 2.2: How to Download a File Using the Gnutella Network

3. If another client has the file, it sends a positive reply back to the requester using

the reverse of the route used by the requester’s query.

4. A direct connection is set up between the requester and the client containing

the requested file, and the file is transferred using the HTTP protocol.

For this research, the focus is on the BitTorrent protocol, another decentralized

peer-to-peer protocol, which is discussed in detail in Chapter 3.

2.1.3 Statistics on P2P Traffic Usage on the Internet. The use of the In-

ternet for peer-to-peer file sharing has steadily increased since the introduction of

the Napster protocol in 1999. In 2000, a University of Wisconsin study found that

Napster traffic had supplanted HTTP traffic as the dominant protocol in use on the

university’s network [Plo00]. In 2002, the University of Washington determined that

peer-to-peer traffic accounted for 43% of all university traffic, with only 14% of traffic

devoted to HTTP [SGD+02]. In a 2007 study, Ipoque, a German-based company

8

Figure 2.3: Peer-to-peer Networking as a Percentage of Total Internet Traffic
[The06]

that specializes in network management for Internet service providers, determined

that between 49 and 83 percent of all Internet traffic is peer-to-peer-related [P2P07].

In January 2006, Cachelogic performed a study that showed approximately 61% of

all Internet traffic is peer-to-peer related, compared to only 32% for HTTP [The06].

Figure 2.3 graphically shows this massive increase in the use of peer-to-peer network-

ing. To put this into perspective, a survey conducted in 2005 found that peer-to-peer

networks worldwide contained over 2.8 billion files available for download [CCM+07].

2.2 Current Methods of Identifying Downloaders of Illegal Files

Given the rapid rise of peer-to-peer file sharing, law enforcement agencies and

copyright holders are struggling to keep up with illegal file sharers. Currently, there

are several methods available to these entities to identify and track illegal file down-

loaders. These methods include the use of honeypots to lure suspects into download-

ing illegal files provided as bait by law enforcement, physically searching a suspect’s

computer for illegal files that have been downloaded in the past, identifying illegal

9

downloads on BitTorrent through the exhaustive search of files available for download,

and a new method of active interception and modification of contraband file sharing

requests.

2.2.1 Honeypots. One simple method of identifying and tracking uploaders

and downloaders of contraband files is through the use of honeypots. In the context

of this discussion, a honeypot is a trap designed to detect and track illegal activities.

In its most basic execution, a computer is set up on the Internet with a collection of

illegal files. These files are then advertised on various peer-to-peer networks, where

they await downloading by illegal file sharers. When another computer attempts to

download the illegal files, the downloader’s IP address, port number, date, time, and

the packets being downloaded are recorded by the honeypot owner. This information

is then either sent to law enforcement agencies for prosecution or used as evidence in

civil lawsuits brought by the owners of the files being downloaded.

In their research, Badonnel, State, Christment, and Festor design and test a

management platform for tracking illegal file sharers using peer-to-peer networks

[BSCF07]. Their platform contains a configurable honeypot agent that is “capable

of advertising parameterizable undesirable content and of identifying cyberpredators

that request those contents.” To create and track these agents, they also create a

separate “platform manager” that configures the honeypot agents and organizes the

resulting data, including the list of illegal file downloaders that the agents have de-

tected and tracked. A custom network protocol is used for communication between

the agents and the manager.

Figure 2.4 shows how the agents and management platform interact to perform

this detection and tracking. To successfully capture a cyberpredator, the system

performs the following functions [BSCF07]:

1. Set Configuration. The platform manager configures the honeypot agent. When

the manager first deploys the honeypot agents, it provides those agents with the

list of keywords used to generate the bait files, along with a set of rules for how

10

Figure 2.4: How Honeypot Agents and the Platform Manager Interact to Detect
and Track Illegal File Downloaders (Adapted from [BSCF07])

the files will be generated and the content of the files. The manager also provides

the initial set of rules that the agent will employ in its local statistical analysis

of downloading activity.

2. Generation of Fake Files. The proper generation of file names by the honeypot

agent is extremely important to the effectiveness of the honeypot. To generate

the fake illegal files, the agent is given a list of keywords common to the types

of files being offered. The agent then randomly generates file names using

combinations of the keywords and attaches extensions corresponding to the

most common formats of illegally download files, such as audio, picture, and

video file types.

3. Capture of File Requests. The honeypot agent must accurately detect, identify,

and record all attempts to download the illegal files that it generated in the

step above. The agent is capable of analyzing all inbound traffic and identifying

sessions using a peer-to-peer protocol. Once the sessions are identified, the agent

records the files being downloaded as well as the identifying information of the

downloader, such as IP address and port number.

11

4. Local Statistical Analysis. The honeypot agent performs a statistical analysis

of the data collected, and identifies information such as the most requested file

keywords and the most active downloaders. The agent uses these results to

determine potential patterns of downloading by certain users and to refine the

generation of file names for future download.

5. Get Management Data. The platform manager gets management data from

the honeypot agent. The manager uses the custom platform communication

protocol to retrieve the results of the local statistical analyses from the honeypot

agents. These results include the list of most request files, most searched for

keywords, and the most active downloaders from the agent’s local perspective.

These results are organized and stored in a database for further analysis.

6. Statistical Analysis. The platform manager performs its own statistical analysis.

The manager takes the local statistical data from all the honeypot agents and

performs a platform-wide statistical analysis on the data. This integrated anal-

ysis allows the manager to identify illegal file downloaders that initially escape

notice by the local agents because of their downloading patterns. In addition,

the analysis also provides the manager with data on what keywords are most of-

ten searched for platform-wide, which is then used to update the file generation

keyword lists that are provided to individual honeypot agents.

2.2.1.1 Shortcomings of the Honeypot Method. While effective against

illegal downloaders who access the honeypots, there are several shortcomings to using

this method for identifying and tracking illegal downloaders.

First, the illegal downloader has to access the honeypot. While a seemingly

trivial problem, the advent of IP blacklists among the downloading community has

dealt a major setback to the honeypot method. An IP blacklist is a list of IP addresses

that are known or suspected to be used by government authorities and corporations

as sources of honeypots to trap and track downloaders. Today, programs such as Peer

Guardian are specifically designed to act as a downloading firewall that blocks these

12

blacklisted IP addresses, preventing the user’s peer-to-peer software from downloading

from them [Gil08].

Second, honeypots are an active method of detection, in that file sharers must

actively download from the honeypot in order to be identified by law enforcement

agencies. For certain classes of highly illegal files, such as child pornography, hard

to find and private invite-only websites are used to keep the general public and law

enforcement from accessing and downloading them [Mac06]. It is very difficult for

honeypots to become registered peers on these private sites, further decreasing their

usefulness.

2.2.2 Hardware Recovery of Illegal Files. Another method of identifying

potential illegal file downloaders is to search the suspect’s computer for illegally down-

loaded files using digital forensic techniques. In their research, Adelstein and Joyce

introduce a digital forensic tool called File Marshal which allows law enforcement to

automatically detect and analyze peer-to-peer software usage on a hard drive [AJ07].

Figure 2.5 shows the four phases used by the File Marshal software to recover peer-

to-peer usage data [AJ07].

2.2.2.1 Discovery Phase. In the discovery phase, the File Marshal

software analyzes the target hard drive and searches for any peer-to-peer client soft-

ware that is currently or was previously installed. By searching for telltale signs

of peer-to-peer software in the system registry, file system directory structure, path

statements, and data directories, the software can identify what peer-to-peer software

has been used on the computer, even programs that were uninstalled prior to the

search.

2.2.2.2 Acquisition Phase. In the acquisition phase, the software re-

trieves all configuration and log information from the peer-to-peer software applica-

tions. These configuration and log files contain useful information such as the names

of downloaded files, when the files were downloaded, what servers the peer-to-peer

13

Figure 2.5: The File Marshal Forensic Software Investigation Process [AJ07]

client has connected to in the past, and lists of hashes for files that have been uploaded

and downloaded.

2.2.2.3 Analysis Phase. In the analysis phase, the software repackages

the information retrieved in the acquisition phase into a format that is easily read and

manipulated by the forensic investigator. File Marshal allows the investigator to view

downloaded files, sort lists by various parameters, and search for files by providing

certain criteria, such as a specific hash value.

2.2.2.4 Report Generation Phase. The last phase, report generation,

involves the software providing an audit trail of every step taken by the forensic

investigator and by the File Marshal tool for authentication and verification purposes.

The software also creates summary reports that can easily be imported into a larger

forensic report.

14

2.2.2.5 Shortcomings of the Hardware Recovery Method. As with

the use of honeypots, there are several drawbacks to the hardware recovery method.

First, the investigator must physically possess the hard drive. In most cases, this

requires some kind of legal action to force a suspect to turn over his computer to the

investigator, which can be an extremely invasive procedure.

Second, in order to recover a suspect’s hard drive for analysis, investigators must

first determine that the hard drive is worth analyzing. In other words, investigators

must already suspect the computer as containing illegal files before acting to confiscate

the drive for analysis. This type of investigation is extremely time and labor intensive,

limiting the ability of law enforcement to tackle widespread illegal file sharing using

this method.

2.2.3 The BitTorrent Monitoring System. A specialized method for detect-

ing and tracking illegal file downloaders is the BitTorrent Monitoring (BTM) system,

designed by Chow, et. al. [CCM+07]. BTM is a system that automatically searches

the Internet for BitTorrent-based downloadable files, analyzes the files to determine

if they are illegal, attempts to download the suspected illegal files, and finally records

tracking information on who provided the files for download. For more information

on the BitTorrent peer-to-peer protocol, see Chapter 3.

Figure 2.6 shows how the BitTorrent Monitoring system works. The system is

divided into two modules, the torrent file searcher (steps 1 and 2 in Figure 2.6) and

the torrent file analyzer (steps 3 through 5) [CCM+07].

2.2.3.1 Torrent File Searching. To gather torrents for download and

analysis, the investigator seeds the BTM with a list of websites that are known or

suspected to contain torrents of illegal files. BTM then performs a depth first search

(DFS) beginning with each seed website on the list and linking to a predetermined

number of hyperlinks away from that seed site. At each site it encounters, BTM

downloads all the .torrent files contained on the webpage and stores them on the

15

Figure 2.6: The BitTorrent Monitoring System Process [CCM+07]

investigator’s computer. These searches can be automatically performed periodically

according to any time interval set by the investigator.

2.2.3.2 Torrent File Analyzer. Once a group of torrents is downloaded,

the file searcher module hands the list off to the file analyzer module. The analyzer

module then compares each .torrent file against a predetermined set of rules that will

identify the file as potentially illegal. These rules include such attributes as name,

country of origin, creation date, and number of seeders.

If the torrent meets the criteria set down by the rules engine, the module then

contacts each peer contained in the file and attempts to download the suspected

illegal file. The results of each attempt are recorded by the module, and are then

compiled into a series of reports that are output to the investigator. At the completion

of the process, the investigator has information on what torrents were downloaded,

which of them were determined by the rules engine as potentially illegal, and tracking

information on the peers who provided BTM with the files.

2.2.3.3 Shortcomings of the BTM System. BTM has the potential to

become a powerful law enforcement tool in combating illegal file sharing. However,

16

there are two main drawbacks to the system. First, due to the sheer number of torrent

files that are available on most torrent websites, the BTM system currently suffers

from a very slow processing time. As the number of sublevels covered by the DFS

increases, the number of total torrent files to be analyzed increases exponentially,

leading to a drastically reduced total processing time.

Second, the BTM system cannot run in real time. As stated above, BTM relies

on the torrent file for generating its list of peers to connect to. However, the actual

peers that are serving the file for download are constantly changing, with peers being

added and deleted continuously. The peer list downloaded from the tracker server

only provides a snapshot of active peers, which quickly becomes outdated, limiting

its use by BTM. In addition, because the BTM system downloads contraband files

to track illicit file sharers, the investigator must ensure that he has the proper legal

authority to download the illicit files.

2.2.4 The CopyRouter Peer-to-Peer Tracking System. In October 2008,

MSNBC reported that an Australian company, Brilliant Digital Entertainment Ltd.,

was marketing a new Internet monitoring tool known as CopyRouter [DS08a]. As

described by Brilliant Digital Entertainment, the CopyRouter system inspects every

packet entering or leaving a target network, looks for peer-to-peer search results that

reference files that are on a known contraband list (such as child pornography, the

stated primary application of the system), and replaces the illicit file reference with

one that leads the user to a law enforcement server instead [DS08b].

Figure 2.7 shows how the CopyRouter system works [DS08b]. When a user

inside a network being monitored by CopyRouter attempts to download a file:

1. The user’s peer-to-peer client sends a file request to other peer-to-peer clients

outside the network on the Internet. CopyRouter does not inspect or modify

this search request.

17

Figure 2.7: How the CopyRouter System Works

2. When an outside peer-to-peer client finds the file, it sends a response to the

user indicating that it has the file. This response is intercepted by CopyRouter

system, and the hash value of the file described in the response is compared to

an internal list of hashes called the Global File Registry (GFR). If the hash value

does not match an entry in the GFR, it is passed along without modification.

3. If the file hash of the response matches an entry in the GFR, CopyRouter

changes the hash value and the IP address of the client where the file can

be found. The IP address is changed to the address of the law enforcement

content server and the hash value is changed to match an image file on the

law enforcement server notifying the user of the infringement. The modified

response is then forwarded to the user.

4. When the user attempts to download the illicit file, he is redirected to the law

enforcement content server.

18

5. The law enforcement content server then sends the user the infringement notice

instead of the illicit file.

6. A copy of the original peer-to-peer client response message as well as the mod-

ified response message are recorded on a law enforcement log server for further

analysis.

Some descriptions of the CopyRouter system claim that it can also hash images,

audio files, and video files in real time and compare those files against the GFR

[DS08a]. If true, the system may also be used to scan email attachments, HTTP

sessions, and FTP transfers in real time.

2.2.4.1 Shortcomings of the CopyRouter System. While the Copy-

Router system seems like an effective child pornography tracking system, there are

several lingering questions surrounding its implementation. First, CopyRouter is a

proprietary system, and to date, Brilliant Digital Entertainment has yet to release

any specifications or experimental data on the system’s speed, effectiveness, or ability

to process all packets at full network speed.

Second, while seemingly effective for peer-to-peer systems where only one up-

loader is involved, such as Gnutella, the system’s ability to monitor distributed peer-

to-peer systems such as BitTorrent is questionable. As discussed in Chapter 3, as a

BitTorrent client downloads pieces of the file from peers, each piece is hashed and

compared against the .torrent file. If the hashes do not match, which is always the

case when the user downloads from the law enforcement content server, the piece is

simply discarded.

Finally, CopyRouter is an active detection and tracking system, meaning that

each packet entering or leaving the network is read and possibly modified before being

allowed to continue through the gateway. One consequence of this is that the system’s

presence can theoretically be detected by users with enough knowledge of how the

system works. These users can then modify their behavior and simply not use the

monitored network to share illicit information.

19

2.3 Traditional Methods for Classifying Network Traffic

One major component of this research is analyzing network traffic in real time

in order to identify packets used by peer-to-peer protocols. Currently, there are three

accepted traditional methods of performing classification analysis on network traffic.

Port matching involves comparing the traffic’s source and destination port against a

list of known port numbers in an attempt to match the traffic to a protocol. Payload

analysis analyzes the first portion of a packet’s payload and attempts to match these

byte strings to a specific protocol. Finally, transport level identification uses network

flow characteristics to identify the protocol being used without payload analysis or

port matching, where a “network flow” is defined as a series of packets flowing on a

network that all contain the same 5-tuple of (source IP address, source port number,

destination IP address, destination port number, protocol used) [CGD07].

2.3.1 Socket-Layer / Port Matching. The simplest and earliest used method

of identifying protocols used by Internet traffic is port matching. In port matching,

the network traffic analyzer extracts the source and destination transport layer port

numbers from each packet, then compares the port numbers against a table containing

a list of peer-to-peer protocols and their corresponding ports. Table 2.1 contains the

TCP port numbers for commonly used peer-to-peer protocols.

Table 2.1: Common TCP Port Numbers Used by P2P Applications [Spe08]

P2P Protocol TCP Port Numbers

eDonkey2000 4661-4665

FastTrack / KaZaA 1214

BitTorrent 6881-6889

Gnutella 6346-6347

Napster 6699

MP2P 41170 UDP

Direct Connect 411-412

20

2.3.1.1 Advantages of Port Matching. The main advantage of classify-

ing Internet traffic by port matching is its simplicity and speed. In port matching, the

only piece of information used to classify the traffic is the port number from the TCP

header, which makes packet analysis extremely simple. The simplicity of extracting

the port number, combined with the ease of comparing the number against a list of

protocols, results in very fast analysis of packets.

2.3.1.2 Drawbacks of Port Matching. In spite of these advantages, port

matching is no longer used as an effective Internet classification method. First, most

peer-to-peer protocols do not register their port numbers with the Internet Assigned

Numbers Authority (IANA). As a result, the IANA cannot accurately track the port

numbers used by these applications and make them available to classification software

developers.

Second, some peer-to-peer protocols use the same port numbers as other, more

well known, applications such as HTTP on Port 80 [Gon05]. This dual-use of well

known ports confuse classification software, resulting in an increased number of false

negatives when attempting to detect peer-to-peer traffic.

Finally, most peer-to-peer applications allow their users to manually set the

port number used by the client. In addition, if the port is not manually specified,

newer peer-to-peer clients will instead assign a random port number. In either case,

attempting to compare these non-standard port numbers against a static list is futile

at best [Gon05]. This weakness is reinforced by a research study in 2005 by Madhukar

and Williamson that determined up to 70% of Internet traffic is unclassifiable by

straight port matching [MW06].

2.3.2 Application-Layer / Payload Analysis. Another traditional method

of identifying Internet traffic by protocol is analyzing the payloads of the packet

stream and searching for telltale byte streams that correspond to a specific protocol.

In their research, Sen, Spatscheck, and Wang develop a system to quickly identify

21

packet streams using peer-to-peer protocols by analyzing the first few bytes of the

packet payloads [SSW04]. Listed below are identifying features they used to detect

five major peer-to-peer protocols by payload.

2.3.2.1 The Gnutella Protocol. The Gnutella protocol uses a series of

HTTP-like commands to request files and reply to file requests. When attempting

to establish a connection, the requester sends the following as the payload of a TCP

packet:

GNUTELLA CONNECT/<protocol version string>\n\n

The affirmative response to the request for a connection uses the following for-

mat:

GNUTELLA OK\n\n

Based on these observations, Sen, et. al. recommend searching for the string

GNUTELLA immediately following the TCP/IP header to identify Gnutella traffic.

2.3.2.2 The eDonkey Protocol. The eDonkey protocol uses a common

header for both file requests and responses. The header is composed of 5 bytes, where

the first byte is a marker byte of value 0xe3, and the next 4 bytes are a number that

represents the size of the entire packet minus the TCP/IP headers and the 5-byte

header. Sen, et. al. recommend using these 5 bytes to identify eDonkey traffic.

2.3.2.3 The Direct Connect Protocol. The Direct Connect protocol is

composed of a series of commands that are used by both the file requester and file

provider, and always follows the following format:

$command_type message1 message2 message 3 ... |

22

All of the commands in Direct Connect begin with the $ character and end

with the | character. Some examples of messages sent within these commands are

Hello, ConnectToMe, Search, and Quit. Sen, et. al. recommend using these

beginning and ending characters as a preliminary filter for Direct Connect traffic.

2.3.2.4 The KaZaA Protocol. The KaZaA protocol, like the Gnutella

protocol, uses HTTP-like commands to request files. The HTTP format for a file

request contains the following fields:

GET /.files HTTP/1.1\r\n

Host: <IP address>/<port>\r\n

UserAgent: KazaaClient\r\n

X-Kazaa-Username: \r\n

X-Kazaa-IP: \r\n

X-Kazaa-SupernodeIP: \r\n

The receiver then sends the following back to the requester:

HTTP/1.1 200 OK\r\n

Content-Length: \r\n

Server: KazaaClient \r\n

X-Kazaa-Username: \r\n

X-Kazaa-Network: \r\n

X-Kazaa-IP: \r\n

X-Kazaa-SupernodeIP: \r\n

Content Type: \r\n

To identify KaZaA traffic, Sen, et. al. recommend searching for the string GET

or HTTP immediately following the TCP/IP header, and then searching the remainder

of the packet for a field containing the string X-Kazaa.

23

2.3.2.5 The BitTorrent Protocol. Finally, in the BitTorrent protocol,

clients establish a connection with each other through a unique handshake followed

by a continuous stream of data. For the connection handshake, the requester and

provider both send packets that share a common header of the form:

0x13 <The 19 byte string: "BitTorrent Protocol">

This header is simply one byte that represents the decimal number 19 in hex-

adecimal followed by a 19-byte string that represents the phrase “BitTorrent Proto-

col”. Sen, et. al. recommend searching for this 20-byte string immediately following

the TCP/IP header to identify BitTorrent traffic.

2.3.2.6 Advantages of Payload Analysis. There are several advan-

tages to using payload analysis for detecting peer-to-peer traffic. First, due to the

uniqueness of the payload message headers, payload analysis is very accurate. Sec-

ond, because accurate identification only requires the analysis of the first 5 to 20 bytes

of the payload, identification can be performed very quickly. In their research, Sen,

Spatscheck, and Wang were able to identify peer-to-peer connections in less than 10

packets with less than 5% false positive and false negative rates [SSW04].

2.3.2.7 Drawbacks of Payload Analysis. There are also some draw-

backs to using payload-based identification of traffic. First, some protocols such as

Gnutella are completely open source, which enables third parties to easily modify the

protocol for their specific client software. These differing implementations can cause

false negatives if the header byte format is changed from the standard implementation

of the protocol. Conversely, other protocols such as KaZaA are proprietary, which

results in a homogeneous implementation by clients but also limits, or eliminates, the

availability of the protocol specification to construct the detection rules from.

Second, payload analysis is vulnerable to obfuscation through the use of byte

padding, which adds random characters to the beginning of the payload in order

24

to move the message headers deeper into the payload, thereby avoiding detection.

Byte padding is discussed further in Section 2.5.1. In addition, if the payloads are

encrypted, payload analysis is not feasible. Payload encryption is discussed further

in Section 2.5.2.

2.3.3 Transport-Layer / Statistical Identification and Analysis. In their re-

search, Karagiannis, Broido, Faloutsos, and Claffy introduce a method of identifying

peer-to-peer traffic by analyzing the connection patterns of various peer-to-peer net-

works [KBFC04]. Introduced in 2004, this method quickly gained acceptance as a new

standard for identifying peer-to-peer traffic within large networks. By observing the

connection patterns of the source and destination IP addresses during a peer-to-peer

file exchange, the researchers were able to design two heuristics that can be used to

identify peer-to-peer traffic solely from these connection patterns.

2.3.3.1 Heuristic Using TCP/UDP IP Pairs. The first heuristic

searches for IP address pairs that exchange information using both TCP and UDP.

The researchers found that many peer-to-peer protocols such as Gnutella, eDonkey,

FastTrack, and Direct Connect use UDP for exchanging control and management in-

formation and TCP for the actual file transfers. However, other common protocols

such as DNS, NETBIOS, and IRC use the same combination of TCP and UDP. Since

these applications use well defined port numbers, the heuristic simply ignores traffic

from these ports to reduce the number of false positives.

By looking for IP address pairs that exchange information using both TCP

and UDP, and ignoring traffic using port numbers that correspond to non-peer-to-

peer protocols, the heuristic is able to identify peer-to-peer traffic flows with great

accuracy when combined with the second heuristic described below.

2.3.3.2 Heuristic Using (IP, port) Pairs. The other heuristic designed

by the researchers is based on evaluating the pattern of connections between source

and destination (IP address, port number) pairs. As discussed previously, in a decen-

25

tralized peer-to-peer network, each client possesses a host cache which contains the

addresses of several superpeers, which allows an initial connection into the network.

When the superpeer receives the connection request from the client, it forwards the

client’s (IP, port) pair to other peers within the network, who then establish connec-

tions with the client.

Because the client’s listening port number is selected randomly, the superpeer

must forward both the IP address and the listening port number to the peers for

them to facilitate a direct connection. So, each time a peer connects to the client, a

network flow is created with the client’s (IP, port) pair as one end of the connection.

The researcher’s heuristic takes advantage of this fact by searching network traffic for

a series of connection to a specific (IP, port) pair from many other unique (IP, port)

pairs.

By looking for network flows that involve many sources connecting to a single

destination (IP, port) pair, this heuristic, when combined with the TCP/UDP pair

heuristic, is able to identify peer-to-peer traffic flow with over 95% accuracy [KBFC04].

2.3.3.3 Advantages of Transport Layer Identification of Peer-to-Peer

Traffic. There are several advantages to using transport layer identification to

detect peer-to-peer networking flows. First, because the two heuristics only depend

on a 5-tuple of (source IP, source port, destination IP, destination port, transport

layer protocol), the identification algorithm can analyze network traffic very quickly,

allowing for real time analysis of network backbone traffic. Second, because the

heuristics are based on the connection patterns only, the algorithm can detect peer-

to-peer traffic using modified or previously unknown protocols.

2.3.3.4 Drawbacks to Transport Layer Identification. There are also

several drawbacks to this method of identifying peer-to-peer traffic flows. First, and

most significantly, this method cannot identify the specific peer-to-peer protocol being

used, nor can it identify what is being sent. Second, while this method is able to iden-

26

tify greater than 95% of all peer-to-peer communication, the false positive rate ranges

from 8% to 12% [KBFC04]. This high rate may limit its usefulness to Internet service

providers seeking to block or shape peer-to-peer traffic, as they would inadvertently

block a sizeable percentage of legitimate traffic as well.

2.4 Non-Traditional Methods for Classifying Network Traffic

In the field of network traffic classification, research is continually being per-

formed in the search for newer, more effective methods of classifying Internet traffic

by protocol. Discussed below are a sampling of non-traditional methods for iden-

tifying network traffic protocols that use Markovian signatures, the discreteness of

remote hosts, clustering algorithms, and flow records.

2.4.1 Markovian Signature-Based Classification. In their research, Dah-

mouni, Vaton, and Rosse describe a real-time method of classifying network traffic

by application protocol using a Markovian signature-based approach [DVR07]. They

constructed a two part process that enumerates Markov chains that represent the

packet flows contained in each target application protocol, and then compares incom-

ing traffic against the Markov chains to find a match.

In the first part of the classification algorithm, a Markov chain is constructed

for each application protocol for which the user wishes to identify traffic. Then, based

on a training dataset which contains sample network flows using the protocols, the

state transition probabilities for each application are created and stored. These state

transition probabilities represent the probabilities of transitioning from one packet

format used by the protocol to another packet format (e.g., a GNUTELLA CONNECT

message from a host followed by a GET /get command message from the host once

the connection is confirmed).

In the second part of the algorithm, the Maximum Likelihood theory and the

Neyman-Pearson theory are applied to the incoming network traffic and the Markov

chains to decide if the traffic matches an application’s Markov model [DVR07]. The

27

algorithm computes the likelihood value for each Markov model against the unknown

traffic flow, and the Markov model with the highest computed likelihood value is

assigned to the flow. Although Dahmouni, et. al. only focused on the HTTP, HTTPS,

and telnet protocols in their research, the method can be expanded to include peer-

to-peer networking applications [DVR07].

2.4.2 Discreteness of Remote Hosts. In their research, Cheng, Gong, and

Ding present a new methodology for identifying BitTorrent-like traffic using what

they term the “Discreteness of Remote Hosts (RHD)” [CGD07]. RHD takes the

total number of concurrent network traffic flows into a specific host (IP address,

port number) pair, and measures how much the flows are spread out among differing

subnetworks and remote hosts. A high RHD indicates that the concurrent network

flows into a host are spread among many different remote networks, indicating that

the flows are most likely part of a BitTorrent file transfer. A low RHD indicates that

the concurrent network flows are concentrated among few remote networks, indicating

a client-server interaction such as an HTTP or an FTP session.

As previously stated in Section 2.3.3, the BitTorrent protocol relies on multiple

peers all connecting to the same host (IP address, port number) in order to download

files. The RHD algorithm takes advantage of this fact by giving a numerical mea-

surement to how discrete the concurrent network flows are; if the RHD measurement

passes a predefined threshold, the flow is labeled as a BitTorrent-like peer-to-peer

session. The RHD method of classifying BitTorrent-like traffic returned an accuracy

of better than 90%, on average [CGD07].

2.4.3 Clustering Algorithms. In their research, Erman, Arlitt, and Mahanti

develop a classification process that relies on using a clustering algorithm to group

network flows by protocol used [EAM06]. The clustering algorithm computes the Eu-

clidian distance between pairs of network connections, where each network connection

is defined as a packet flow between two hosts. Each packet flow consists of the number

28

of packets in the flow, the mean packet size, the mean payload size, the total number

of bytes transferred, and the mean inter-arrival time of the packets.

The classification process is composed of two parts. First, an unsupervised

clustering algorithm such as K-Means (which partitions objects into K subsets based

on squared-error calculation for each object) or DBSCAN (which assigns objects to

clusters based on the density of other objects in its immediate vicinity) is applied to a

set of test data in order to build and accurately label a set of clusters, which becomes

the classification model. Second, the model is used to build a classifier tool, which

the researchers have not yet constructed, that can label network traffic either offline,

using packet capture files, or in real time on a live network.

The researchers note that this classification technique is still in the developmen-

tal stage. However, even with this limitation, they are still able to correctly classify

Internet traffic with an accuracy of approximately 80% [EAM06].

2.4.4 Flow Records. In their research, Karagiannis, Papagiannaki, and

Faloutsos outline a novel approach to the traffic classification problem that they term

BLINd Classification (BLINC) [KPF05]. This classification framework attempts to

characterize network flows on three levels: The social level, the functional level, and

the application level. By combining data gleaned from each of these levels, an accurate

identification of the network flow can be made.

2.4.4.1 The Social Level. At the social level, BLINC measures the

popularity of each host in the network by measuring the number of other hosts it

communicates with. As shown in Figure 2.8, the BLINC system analyzes the source

and destination IP addresses of each packet flowing through the network, and groups

them together to form bipartite clusters of hosts. By analyzing these graphs using

various cross-association algorithms, BLINC can determine the diversity of the con-

nections made to and from each host, and then identify the popularity of each host

and frequency of communications between hosts.

29

Figure 2.8: Example of a Bipartite Cluster of Network Hosts [KPF05]

2.4.4.2 The Functional Level. At the functional level, BLINC uses

connection information to determine the function of each host on the network, such as

a server, consumer, or collaborator. For example, a host that receives many incoming

connections on one listening port is most likely a server of information to various

consumers. For this analysis, BLINC looks at the source and destination IP addresses,

as well as the source port number for each packet.

2.4.4.3 The Application Level. At the application level, BLINC looks

at the transport layer interactions between hosts in an attempt to determine what

applications are being used for the packet flows. After examining the source and

destination IP addresses, as well as the source and destination port numbers, BLINC

constructs a graphlet, which is a pattern of behavior for a given network flow. Fig-

ure 2.9 shows examples of these graphlets for some common applications found on

the Internet. In each graphlet, the relationship between the source and destination

IP addresses, shown in the first two columns, and their relationship to the source and

destination ports, shown in the last two columns, are expressed by lines connecting

the various nodes. By constructing a library of these graphlets, each of which has a

30

Figure 2.9: Transport Layer Interactions for Various Applications [KPF05]

unique and easily recognizable shape and connection pattern, BLINC can then com-

pare an unknown traffic flow against the library and attempt to match it to a known

application.

Through the use of a series of heuristics based on these three levels, the re-

searchers were able to classify 80-90% of network traffic with an accuracy of greater

than 95% [KPF05].

2.5 Obfuscation of Peer-to-Peer Traffic

As previously discussed in Section 2.1.3, peer-to-peer networks account for a

majority of Internet traffic. In order to combat this trend, and to preserve their band-

width, some Internet service providers (ISPs) are taking active measures to throttle

peer-to-peer traffic on their networks. For example, Comcast has developed a method

of throttling peer-to-peer traffic, whereby when the ISP’s traffic classifiers detect an

extremely active peer-to-peer connection, it transmits RESET messages to the sender

31

and receiver to break the TCP connection [Sve07]. In order to combat traffic throt-

tling by ISPs, peer-to-peer clients have begun using obfuscation techniques to defeat

the traffic classifiers. Outlined below are three methods of traffic obfuscation: Byte

padding, Encryption, and Tunneling.

2.5.1 Byte Padding. One method of preventing a payload-based traffic

classifier from accurately identifying peer-to-peer traffic is to use byte padding. In

byte padding, a series of random characters is appended to the beginning of every

packet sent by the peer-to-peer client. Since payload analyzers usually look at the

first 16 to 40 bytes of payload to determine the protocol used, byte padded packets

will look like encrypted traffic and will be labeled as “unknown.”

Though this method of obfuscation is effective against primitive payload-based

classifiers, it suffers from several shortcomings. First, the messages identifying the

packet as belonging to a peer-to-peer protocol are still visible; they just appear later

in the payload. By modifying the payload-based packet analyzer to search the entire

payload of each packet, this obfuscation technique can be defeated. Second, this

obfuscation technique has no effect on network flow-based classification methods that

do not analyze the payload at all in order to identify the application being used.

2.5.2 Encryption. A more sophisticated method of obfuscation is to encrypt

the payloads of the packets being exchanged on the peer-to-peer network. Encrypting

the payloads renders payload-based classification useless, since there is no longer any

useful information available. For example, the eMule peer-to-peer client (which uses

the eDonkey peer-to-peer protocol) allows the user to enable “protocol obfuscation”,

in which users exchange keys using public key cipher, then exchange data using RC4

bit stream encryption [Pro08b].

As with byte padding, encryption has no effect on transport-layer traffic identi-

fiers, since the TCP/IP headers are still intact (only the payload is obfuscated), and

the payload is not analyzed in these methods.

32

2.5.3 Tunneling. Currently, the best method of obfuscating peer-to-peer

network communication is to use a tunneling mechanism such as secure shell (SSH)

or a virtual private network (VPN). In SSH and VPN, the packets containing the

peer-to-peer protocol are themselves encrypted and encapsulated by the SSH/VPN

protocol, then sent on the network as an SSH or VPN packet. This restricts the

amount of useful data about the underlying peer-to-peer protocol to the source and

destination IP addresses, approximate packet size, and timing. Using an SSH or VPN

tunnel will defeat almost any classification method, most of which will simply identify

the peer-to-peer traffic as an encrypted tunneling protocol.

However, there has been research done on identifying the underlying traffic of

an SSH or VPN connection. In their research, Gebski, Penev, and Wong describe a

method of identifying the underlying applications within tunneling traffic [GPW06].

By constructing bipartite graphs of request and response pairs, then combining these

graphs with timing and size information, the researchers were able to identify BitTor-

rent traffic with 90% accuracy.

In their research, Wright, Monrose, and Masson achieve the same results while

using the same network information, namely packet size, timing, and direction of

flow [WMM06]. By using a combination of k-Nearest Neighbors and hidden Markov

model classifiers, the researchers were able to achieve accurate detection rates of 80-

90% for common protocols such as HTTP and telnet. In addition, they were able

to actually track the number of flows within an encrypted tunnel if they all use a

single protocol. Note that both of these methods can only confirm the existence of

peer-to-peer traffic; it cannot determine what is being downloaded.

2.6 Summary

This chapter presents background information on the evolution of peer-to-peer

networking and the major types of peer-to-peer protocols that are currently being em-

ployed. Several current methods of identifying and tracking illicit file sharers are dis-

cussed and analyzed. Current research in the areas of traditional and non-traditional

33

network traffic classification are studied. Finally, the most common techniques for

obfuscating and encrypting peer-to-peer traffic are discussed. Based on the informa-

tion provided in this chapter, payload analysis is selected as the traffic classification

method for the TRAPP system, and the issues of obfuscation and encryption are not

considered in this research due to the complexity of the problem.

34

III. The BitTorrent Peer-to-Peer Networking Protocol

This chapter presents an overview of the BitTorrent peer-to-peer protocol, which

will be used extensively for this research. To provide a foundation for under-

standing the BitTorrent protocol, Section 3.1 gives an overview of how the protocol

functions to distribute files, Section 3.2 discusses specific terminology necessary for

an understanding of the protocol, Section 3.3 provides a primer on how to encode

information using BitTorrent’s bencoding system, and Section 3.4 provides a general

discussion of how the SHA-1 hash algorithm works. Once this foundation is laid,

Section 3.5 delves into the inner workings of the .torrent file, Section 3.6 describes the

BitTorrent tracker protocol which is used to request files, and Section 3.7 describes

the BitTorrent peer wire protocol which is used for the actual transfer of files.

3.1 Overview of How BitTorrent Works

One of the greatest drawbacks to Gnutella and other distributed peer-to-peer

protocols discussed in Section 2.1.2 is the fact that most users can download files

at much greater speeds than they can upload them [Rea05]. Because Gnutella-like

protocols involve one peer uploading a file to another peer that downloads it, the total

transfer speed is capped by the upload speed, which can be many times slower than

the download speed.

In 2001, Bram Cohen developed a new protocol called BitTorrent that was

designed to take advantage of high download speeds while mitigating the effect of

slow upload rates [Coh03]. The BitTorrent protocol differs from other distributed

peer-to-peer protocols in that it allows downloaders to download pieces of files from

tens or hundreds of other users simultaneously. To further speed up downloads, every

user that downloads pieces of files also uploads those pieces he already possesses. By

aggregating the slower upload speeds of hundreds of peers, the protocol can achieve

very high download rates.

35

3.1.1 The Purpose of BitTorrent. BitTorrent is designed to give individuals

and businesses the power to distribute enormous amounts of data using a reduced

amount of bandwidth, which places less strain on content provider servers and reduces

the costs associated with the bandwidth. For businesses, this distributed system also

provides data redundancy in that there is now no single point of failure for loss of

data. For individuals, BitTorrent provides the fastest possible speeds due to its ability

to download data from many other peers simultaneously [Bas08].

In fact, according to BitTorrent’s author, Bram Cohen [Coh08]:

Cooperative distribution can grow almost without limit, because each new
participant brings not only demand, but also supply. Instead of a vicious
cycle, popularity creates a virtuous circle. And because each new partici-
pant brings new resources to the distribution, you get limitless scalability
for a nearly fixed cost.

3.1.2 Downloading a File Using BitTorrent. Figure 3.1 shows how the Bit-

Torrent protocol is used to download a file. As shown in the figure, when downloading

a file, the following occurs:

1. The user searches the Internet for a web site that contains the .torrent file for

the file he wishes to download.

2. The user then downloads the .torrent file and uses a BitTorrent client to open

the file.

3. The client uses the metadata contained in the .torrent to contact the tracker

and submit a peer list request using the BitTorrent tracker protocol.

4. The tracker sends the client a list of all peers currently seeding the file referenced

in the .torrent file.

5. The client sends handshake messages to the peers on the list sent to it by the

tracker, and joins the swarm. If the remote peer has the file, it will respond.

6. The client then proceeds to download pieces of the file from each seeder that

responds to the handshake message using the BitTorrent peer wire protocol. As

36

Figure 3.1: How the BitTorrent Protocol Works

the client completes the download of a piece, it immediately provides the piece

to other peers in the swarm for them to download.

7. Once the entire file is downloaded, the client continues to act as a seeder for the

file until the user disconnects the client from the swarm.

3.1.3 An Example of the Power of the Swarm. In Wired magazine, Clive

Thompson provides a startling account of the power of the BitTorrent peer-to-peer

model [Tho05]. A graduate student in computer science at Stanford named Gary

Lerhaupt was intrigued by the documentary Outfoxed, and decided that he wanted to

make it available to more people. Lerhaupt contacted the film’s producer and asked

for and received permission to post a portion of the documentary on his web site as

a torrent. Over the next two months, approximately 1,500 people downloaded the

500-megabyte video, consuming around 750 gigabytes of traffic. However, because of

37

the unique nature of BitTorrent, Lerhaupt himself only served up 5 gigabytes; the rest

of the data was provided by other seeders that had downloaded the file from Lerhaupt

and then served up portions themselves. In essence, BitTorrent allowed Lerhaupt to

effectively increase his data output by a factor of 150 by using the power of the swarm.

3.2 Terminology

The BitTorrent protocol uses a specific lexicon to describe different aspects

of the network’s components and functions. Outlined below are some of the more

common terms used when describing the BitTorrent protocol, and most are used later

in this section [Dir07].

3.2.1 Torrent. The term torrent has two possible meanings, depending on

context. In one case, the term torrent refers to the .torrent file that contains the

metadata necessary to download a specific file or group of files. In the other case, the

term refers to the actual file or group of files being shared.

3.2.2 Peers and Swarms. In BitTorrent, a peer is any computer running

a BitTorrent client program that is connected to the Internet and is available for

uploading or downloading information. Any collection of peers that is actively sharing

a particular torrent is called a swarm.

3.2.3 Seeders and Downloaders. As with any other peer-to-peer protocol,

BitTorrent has a number of computers uploading or downloading information to and

from each other. A seeder is a peer that possesses a complete copy of a file and is

actively making it available to other peers for download. A downloader, on the other

hand, is a peer that does not have a complete copy of the torrent and is actively re-

trieving it from other peers. As stated previously, any peer that downloads a torrent

is also serving up those pieces already downloaded to other peers. So, in the BitTor-

rent protocol, all downloaders are also uploaders (at least until the file is completely

38

download, at which time the downloader can choose whether or not to be a seeder for

the torrent).

3.2.4 Leeches and Lurkers. The success of the BitTorrent protocol depends

on peers offering files for seeding once they are downloaded. A leech is a peer that

does not make files available for seeding once they are downloaded, does not add any

new content for download, and may artificially reduce its upload speed to limit the

amount of data uploaded. A lurker is similar to a leecher in that the peer does not

offer any new content for download. However, a lurker, unlike a leecher, becomes a

seeder for any files downloaded.

3.2.5 Trackers. A tracker is a server whose purpose is to keep track of

what seeders and peers are available in a particular swarm. The tracker usually also

contains a web server containing .torrent files that are available for download. The

tracker only provides coordination; it is in no way involved in actual file transfer and

does not contain copies of files to share.

3.2.6 Blocks versus Pieces. When a file is made available for downloading,

it is divided into pieces, which are equal sized portions of the file (except for the

last piece), and are almost always a power of 2 in length, measured in bytes. In the

latest version of the BitTorrent protocol, the piece length defaults to 218 bytes =

256 kilobytes [Coh08]. Each piece is hashed using SHA-1 and the resulting 160-bit

hash is placed in the .torrent file. A block is a portion of a piece that is requested

by the downloader; when all blocks in a piece are retrieved, they are combined into a

piece, error checked, then made available for download to other peers.

3.3 Bencoding

Bencoding (pronounced “Bee Encoding”) is the method that BitTorrent uses

to encode and organize data within .torrent files [Coh08] [Bit08]. It provides support

39

for encoding integers, byte strings, lists, and dictionaries. Outlined below are the

encoding formats and how they are created.

3.3.1 Encoding Integers. To encode an integer, use the following format:

i<integer encoded in base 10 ASCII>e

Examples: i786e i-8754e

The i and e are the beginning and ending delimiters for the number. For

negative numbers, insert a “-” sign before the number. The use of leading zeros (e.g.,

i00045e) is prohibited.

3.3.2 Encoding Strings. To encode a byte string, use the following format:

<string length in base 10 ASCII>:<byte string>

Examples: 6:pieces 4:name

In this case, there are no beginning or ending delimiters. The contents of the

byte string can contain either a string of ASCII characters or, in the case of SHA-1

hashes, pure binary data. Thus, the use of a hex editor is essential to read the contents

of a bencoded byte string.

3.3.3 Encoding Lists. To encode a list composed of any other type of

bencoded data, use the following format:

l<bencoded data>e

Example: l6:piecesi256ee

Note that in the example, the list ends with two e’s. The first e delimits the

integer value and the second e delimits the list.

40

3.3.4 Encoding Dictionaries. To encode a dictionary consisting of elements

and keys, use the following format:

d<bencoded key><bencoded element><bencoded key><bencoded element>e

Example: d6:piecesi64e6:lengthi16256ee represents pieces => 64

and length => 16256.

In the case of dictionaries, the keys must be bencoded strings, and the values

may be any bencoded type, including integers, strings, lists, or other dictionaries.

3.4 The SHA-1 Hash

RFC 3174 was created to implement the Secure Hash Algorithm 1 (SHA-1),

designed by the United States Government and labeled the Federal Information Pro-

cessing Standards Publication 180-1 (FIPS 180-1) [RFC01]. The SHA-1 algorithm

takes a binary message of less than 264 bits and produces a 160-bit output message

labeled a message digest. This message digest can then be used to generate a digital

signature, providing authenticity for the original message [FIP93].

3.4.1 Creating a Message Digest. As stated in FIPS 180-1, the message

digest is created by applying the following series of steps to the original message:

1. Pad the message. The message is padded with a 1, a series of 0s, then a 64-bit

integer that represents the total length of the message, so that the total message

length is a multiple of 512.

2. Divide the message. The message is divided into 512-bit blocks, where each

block is composed of 16 words of 32 bits each.

3. Initialize the constants. Before the algorithm is applied, 5 constants, each 32 bits

long and labeled A through E, are initialized with values determined by the

standard [RFC01]. These constants are combined with the message words using

modular arithmetic to produce the message digest.

41

Figure 3.2: How a Round in the SHA-1 Hashing Algorithm Works [MRR08]

4. Apply the algorithm. As shown in Figure 3.2, the 32-bit message words A, B,

C, D, and E are taken 5 at a time and run through a series of mathematical

operations. In the figure, f is a varying nonlinear function, << denotes a left

shift by the indicated number of bits, W is the expanded message word for the

round, K is the constant for the round, and + indicates addition modulo 232. At

the end of 80 of these rounds, the 5 words remaining (shown at the bottom of

the figure) are concatenated to create the (5 words * 32 bits per word = 160 bits)

160-bit message digest.

3.4.2 Security of the SHA-1 Standard. According to the FIPS 180-1 stan-

dard, the SHA-1 hash is considered to be a secure hash because “it is computationally

infeasible to find a message which corresponds to a given message digest, or to find

two different messages which produce the same message digest. Any change to a mes-

sage in transit will, with very high probability, result in a different message digest,

and the signature will fail to verify” [FIP93].

42

Researchers around the world are currently attempting to construct collisions

(two messages that produce the same message digest) using SHA-1. In 2005, a team

of researchers in China discovered a method that theoretically can produce a collision

using 269 operations. While this number of computations is still unfeasible, it is less

than the commonly accepted bound of 280 operations, which is considered to be the

minimum number of computations for a system to be secure [MRR08].

3.4.3 Use of the SHA-1 Hash in BitTorrent. The SHA-1 algorithm is used

in the BitTorrent protocol for two purposes, error correction and file identification.

In error correction, the SHA-1 algorithm is applied to each block of the file to

be uploaded via BitTorrent. These message digests are then placed in the .torrent file

that the client downloads. Once a block is completely downloaded from the seeders,

the client applies the SHA-1 to the downloaded block and compares the message

digest to the one in the .torrent file. If the two hashes match, the client assumes that

the transfer was error-free.

In file identification, the SHA-1 algorithm is applied to the information dictio-

nary contained in the .torrent file. The resulting message digest is labeled as the

file identifier, which will uniquely identify the file being offered for download regard-

less of the file description provided by the tracker. When a downloader requests a

file, the client will provide the hash as the file identifier in the GET request. This

method prevents two files that have the same description but different contents from

being confused with each other when downloading blocks from peers. More informa-

tion on how to compute the information dictionary hash from the .torrent file is in

Section 3.5.3.

3.5 The .torrent File

The .torrent file contains metadata that allows a BitTorrent client to connect

to a tracker, obtain a peer list, and download the file requested. The contents of the

43

.torrent file are outlined below, followed by an example of a .torrent file downloaded

from the Internet.

3.5.1 Contents of the .torrent File. All information in the .torrent file is

bencoded and contains the following fields [Bit08]:

• announce. This is the URL of the tracker from which the peer list will be

downloaded.

• creation date. This is the creation time of the .torrent file, in standard UNIX

epoch format.

• info. A bencoded dictionary containing the rest of the items below.

• length. This is the length of the file to be downloaded in bytes.

• name. The name of the file to be downloaded.

• piece length. The length of each piece of the file in bytes.

• pieces. A byte stream containing the SHA-1 hashes of each piece concatenated

together. The length of this byte stream will always be a multiple of 20.

• path. Used to identify the file structure of a .torrent that contains multiple files.

3.5.2 Example of a .torrent File. The following .torrent represents a 2,133,210-

byte file, named freeculture.zip which is available from the www.legaltorrents.com

website [Les08a]. Note that for this example, the portion of the file containing the <>

delimiters (which are not actually contained in the file) and the contents within are

the 180 bytes of binary data converted to hexadecimal and represented in ASCII for

readability purposes.

d8:announce42:http://www.legaltorrents.com:7070/announce13:creation

datei1081312084e4:infod6:lengthi2133210e4:name15:freeculture.zip12:

piece lengthi262144e6:pieces180:<ED89E7384B0D340FA5FFFA19D1A00D88E7

54BE00505C6EDB15D307AA8E463891F4D2530E8DD1390A0476F3973BA169B561031

44

ECC4328751A4C0094E1F23149441F4A2C95E2A7C8C1804BBDF379F39DDC4E4356CB

152A7A4B6BC5CC1C9079ABD1E4F7C4225E685CFC63562F81AED6911A0F92C83026D

4D8673CA2233427C06B20C2CED026B7B84932B3C12655DBEF49E0057373AC89D056

2758F391A5F7DEAB52B2DD59AF12E3441B8B5393FF8D76DE6BC1910F84>ee

Before analyzing this particular .torrent file, it is helpful to add line breaks and

spaces to make the contents more readable:

d8:announce 42:http://www.legaltorrents.com:7070/announce

13:creation date i1081312084e

4:info

d6:length i2133210e

4:name 15:freeculture.zip

12:piece length i262144e

6:pieces 180:

<ED 89 E7 38 4B 0D 34 0F A5 FF FA 19 D1 A0 0D 88 E7 54 BE 00

50 5C 6E DB 15 D3 07 AA 8E 46 38 91 F4 D2 53 0E 8D D1 39 0A

04 76 F3 97 3B A1 69 B5 61 03 1E CC 43 28 75 1A 4C 00 94 E1

F2 31 49 44 1F 4A 2C 95 E2 A7 C8 C1 80 4B BD F3 79 F3 9D DC

4E 43 56 CB 15 2A 7A 4B 6B C5 CC 1C 90 79 AB D1 E4 F7 C4 22

5E 68 5C FC 63 56 2F 81 AE D6 91 1A 0F 92 C8 30 26 D4 D8 67

3C A2 23 34 27 C0 6B 20 C2 CE D0 26 B7 B8 49 32 B3 C1 26 55

DB EF 49 E0 05 73 73 AC 89 D0 56 27 58 F3 91 A5 F7 DE AB 52

B2 DD 59 AF 12 E3 44 1B 8B 53 93 FF 8D 76 DE 6B C1 91 0F 84>ee

Deconstructing this example, the following information can be extracted:

• Location of the tracker: http://www.legaltorrents.com:7070/announce

• Creation date: Wednesday, 7 April 2004 at 04:28:04 UTC

45

• File length: 2,133,210 bytes

• File name: freeculture.zip

• Piece length: 262,144 bytes or 256 Kilobytes per piece

• Number of pieces: 180 bytes of binary data divided by 20 bytes (160 bits) per

piece = 9 pieces total.

3.5.3 Computing the Information Dictionary Hash Value. For later portions

of the research, the information dictionary hash value, also known as the file info hash,

takes on enormous importance. Recall that when a peer wants to download a file,

the BitTorrent client will take the information dictionary portion of the .torrent file,

apply the SHA-1 algorithm, and use that 160-bit value as the file identifier. This

unique 20-byte identifier is then used in the BitTorrent GET request message to ask

the swarm for the file.

However, it is not immediately clear exactly which portion of the .torrent file

is processed using the SHA-1 algorithm to generate the hash. After an exhaustive

brute force search, the portion of the file used for hashing was discovered to be the

byte stream beginning with the string d6:length and ending with the first e after

the hash values of the file pieces.

In the example above, the information dictionary hash value is based on the

following byte stream:

d6:length i2133210e

4:name 15:freeculture.zip

12:piece length i262144e

6:pieces 180:

<ED 89 E7 38 4B 0D 34 0F A5 FF FA 19 D1 A0 0D 88 E7 54 BE 00

50 5C 6E DB 15 D3 07 AA 8E 46 38 91 F4 D2 53 0E 8D D1 39 0A

04 76 F3 97 3B A1 69 B5 61 03 1E CC 43 28 75 1A 4C 00 94 E1

F2 31 49 44 1F 4A 2C 95 E2 A7 C8 C1 80 4B BD F3 79 F3 9D DC

46

4E 43 56 CB 15 2A 7A 4B 6B C5 CC 1C 90 79 AB D1 E4 F7 C4 22

5E 68 5C FC 63 56 2F 81 AE D6 91 1A 0F 92 C8 30 26 D4 D8 67

3C A2 23 34 27 C0 6B 20 C2 CE D0 26 B7 B8 49 32 B3 C1 26 55

DB EF 49 E0 05 73 73 AC 89 D0 56 27 58 F3 91 A5 F7 DE AB 52

B2 DD 59 AF 12 E3 44 1B 8B 53 93 FF 8D 76 DE 6B C1 91 0F 84>e

Running this portion of the .torrent byte stream through a SHA-1 hash value

generator, the following message digest is created:

<CA 6A C4 BB D9 71 D3 90 29 35 DB CF C2 D3 EA 25 B4 28 A5 47>

3.6 The Tracker Protocol

The first protocol used by BitTorrent is the tracker protocol, which runs on top

of HTTP. The protocol consists of two messages: The peer list request made by the

client to the tracker that also includes file transfer statistics used by the tracker, and

the response message from the tracker that provides the client with a list of peers

that are seeding the file of interest to the client.

3.6.1 The File GET Request. To request a peer list from the tracker, the

client sends a GET request containing the following fields:

1. GET /announce. Header for the GET request.

2. info_hash. The 20-byte SHA-1 hash of the information dictionary used to

uniquely identify the file to be downloaded. Note that since the GET request is

transmitted in ASCII, this value will have to be escaped using the %xx format

as described in RFC 1738 [RFC94].

3. peer_id. A 20-byte string that uniquely identifies the BitTorrent client request-

ing the file. This ID is created by the client sending the request.

47

4. port. The port number that the client is listening on.

5. uploaded. The total amount of data in bytes uploaded since the first started

message was sent to this tracker.

6. downloaded. The total amount of data in bytes downloaded since the first

started message was sent to this tracker.

7. left. The total amount of data in bytes left to be downloaded.

8. key. An optional field containing an ASCII string used by a client to reconnect

to the tracker should its IP address change.

9. event. This may be one of three values:

(a) started. Sent when the client first connects to the tracker.

(b) stopped. Sent when the client disconnects from the tracker before the

download is complete.

(c) completed. Sent when the client completes the file download.

10. numwant. An optional field that indicates how many peers the client wants the

tracker to provide.

11. compact. Indicates whether the client can accept a compressed version of the

peer list, which is composed of six bytes per peer (4 bytes for the IP address

and 2 bytes for the port number).

12. no_peer_id. Indicates whether the client is requesting peer id numbers for each

peer in the list.

13. Host. The URL and port number of the tracker the request is being sent to.

14. User-Agent. The name and version number of the client being used.

15. Accept-Encoding. The type of encoding accepted by the client.

3.6.2 The Tracker Response. Upon receiving the GET request, the tracker,

if it has the information requested, will send a response containing the following fields:

48

1. HTTP/1.0 200 OK.

2. Content-Length, Content-Type, and Pragma. Additional information associ-

ated with the HTTP OK message.

3. 8:complete. The number of peers that have the entire file, a.k.a. seeders.

4. 10:incomplete. The number of peers that are in the swarm, but do not have

the entire file, a.k.a. downloaders.

5. 8:interval. The interval in seconds that the client should wait between sending

requests to the tracker.

6. 5:peers. A byte string containing the IP addresses and port numbers of all

peers in the swarm. If the peers are sent in the compacted format (see the GET

request above), this byte string will have a length that is a multiple of six.

3.6.3 Tracker Request and Response Example. The following tracker re-

quest and tracker response are taken from the download of a 103,372,284-byte file,

named freeculture-audiobook.zip which is available from the www.legaltorrents.com

website [Les08b]. Note that for this example, the portion of the file containing the

<> delimiters (which are not actually contained in the file) and the contents within

are binary data converted to hexadecimal and represented in ASCII for readability

purposes.

First, the client sends a GET request to the tracker at address 8.12.35.122:7070,

which corresponds to the URL http://www.legaltorrents.com:7070/announce, and is

the same URL as the previous example:

GET /announce?info_hash=%10%1c%9dc%21%1c%3cW%0f%fb%ad%d4%9cVI%d3%fb

Irs&peer_id=-UT1770-%f3%9f%fd%c7t%b5jLSR%c1%1c&port=43438&uploaded=

0&downloaded=0&left=103372284&key=7F29A0C7&event=started&numwant=20

0&compact=1&no_peer_id=1 HTTP/1.1<0D0A>Host: www.legaltorrents.com:

7070<0D0A>User-Agent: uTorrent/1770<0D0A>Accept-Encoding: gzip<0D0A

0D0A>

49

Again, it is helpful to reorganize the message for readability purposes:

GET /announce

?info_hash=%10%1c%9dc%21%1c%3cW%0f%fb%ad%d4%9cVI%d3%fbIrs

&peer_id=-UT1770-%f3%9f%fd%c7t%b5jLSR%c1%1c

&port=43438

&uploaded=0

&downloaded=0

&left=103372284

&key=7F29A0C7

&event=started

&numwant=200

&compact=1

&no_peer_id=1

HTTP/1.1 (Carriage Return/Line Feed)

Host: www.legaltorrents.com:7070 (CR/LF)

User-Agent: uTorrent/1770 (CR/LF)

Accept-Encoding: gzip (CR/LF/CR/LF)

Note that the info_hash and peer_id fields are composed of hexadecimal num-

bers that have been escaped into ASCII.

After the tracker receives the GET request, it sends the following back to the

client:

HTTP/1.0 200 OK<0D0A>Content-Length: 69<0D0A>Content-Type: text/pla

in<0D0A>Pragma:no-cache<0D0A0D0A>d8:completei8e10:incompletei1e8:in

tervali1800e5:peers12:<4B8B8403F5DBD0452AC21B9F>e

50

And, after reordering for readability purposes:

HTTP/1.0 200 OK (Carriage Return/Line Feed)

Content-Length: 69 (CR/LF)

Content-Type: text/plain (CR/LF)

Pragma:no-cache (CR/LF/CR/LF)

d8:complete i8e

10:incomplete i1e

8:interval i1800e

5:peers 12:<4B 8B 84 03 F5 DB D0 45 2A C2 1B 9F>e

Note that the tracker sends back the addresses of two peers that are actively

seeding the file. These addresses and port numbers, in dotted quad notation are:

4B 8B 84 03 F5 DB

75 . 139 . 132 . 3 : 62939

and

D0 45 2A C2 1B 9F

208 . 69 . 42 . 194 : 7071

Now that the client has the addresses of two peers, it can use the peer wire

protocol to begin downloading the file.

3.7 The Peer Wire Protocol

The peer wire protocol is the other main protocol used by BitTorrent, and runs

on top of TCP. The purpose of this protocol is to enable the exchange of file pieces

enumerated in the .torrent files. The peer wire protocol serves two main functions,

handshaking and exchanging messages pertaining to the actual transfer of file pieces

between peers.

51

3.7.1 The Handshake. Continuing the previous example, the client sends

the following handshake request to each of the two peers in the list provided by the

tracker.

<13>BitTorrent protocol<0000000000100001101C9D63211C3C570FFBADD49C5

649D3FB4972732D5554313737302DF39FFDC774B56A4C5352C11C>

As with the .torrent file, before analyzing this particular request, it is helpful to

add line breaks and spaces to make the contents more readable:

<13> BitTorrent protocol

<00 00 00 00 00 10 00 01

10 1C 9D 63 21 1C 3C 57 0F FB AD D4 9C 56 49 D3 FB 49 72 73

2D 55 54 31 37 37 30 2D F3 9F FD C7 74 B5 6A 4C 53 52 C1 1C>

Deconstructing this example, the following information can be extracted:

1. String length of the name of the protocol used: Decimal number “19” in hex

(0x13).

2. Protocol header: The ASCII string “BitTorrent protocol”. Note that the string

has 19 characters in it, hence the “19” as the string length above.

3. Reserved extension bytes: 00 00 00 00 00 10 00 01

4. SHA-1 hash of information dictionary:

10 1C 9D 63 21 1C 3C 57 0F FB AD D4 9C 56 49 D3 FB 49 72 73

5. Peer ID:

2D 55 54 31 37 37 30 2D F3 9F FD C7 74 B5 6A 4C 53 52 C1 1C.

Note that the string 2D 55 54 31 37 37 30 2D corresponds to the ACSII string

-UT1770-. This denotes that a uTorrent client running version 1.7.7 created the

.torrent file [Bit08].

52

3.7.2 Other Messages. Once the handshake is complete, the client and

remote peer use the peer wire protocol to exchange messages to coordinate the ex-

change of file piece data. The standard messages supported by the BitTorrent peer

wire protocol are listed below [Bit08]:

• choke. Sent by a remote peer to a downloader informing it that no requests for

data will be honored until the downloader is unchoked.

• unchoke. Sent by a remote peer to a downloader informing it that it will honor

the downloader’s requests for data.

• interested. Sent by a client to a remote peer informing it that the remote

peer has data the client wishes to download.

• not interested. Sent by a client to a remote peer informing it that the remote

peer does not have data the client wishes to download.

• have. Sent by a downloader when a piece has completed downloading and the

hash has been correctly matched to the .torrent file.

• bitfield. Sent by a downloader as the first message. This message contains a

string of bits representing each piece of the file, with a 1 set for each piece that

the downloader possesses, otherwise 0.

• request. Sent by a downloader to request a portion of a file piece. This message

contains the index of the piece within the file, the offset from the beginning of

the piece, and the amount of data requested.

• piece. Sent by the peer to the downloader in response to the request message.

This message contains the index of the piece, the byte offset, and the actual

data requested.

• cancel. Sent by the downloader to cancel the download of a block of data.

• keep-alive. Sent by a peer to keep a connection from being torn down if there

is no data being sent in either direction.

53

3.8 Summary

This chapter provides an overview and discussion of the BitTorrent peer-to-

peer protocol. The purpose of the protocol is given, and the services provided by

the protocol are discussed. A typical BitTorrent file transfer session is described, and

selected terminology and data encoding techniques are discussed. The contents of the

.torrent file are analyzed, and the operations of the tracker protocol and peer wire

protocol are explained. In particular, the peer wire protocol’s handshake packet is

identified and analyzed by the forensic tool in order to extract the unique 20-byte

hash of the file to be transferred. Finally, real-world examples of BitTorrent messages

are examined, and their contents analyzed.

54

IV. The Session Initiation Protocol

This chapter presents an overview of the Session Initiation Protocol (SIP), which

is the other peer-to-peer protocol that is used extensively in this research. To

provide a foundation for understanding SIP, Section 4.1 gives an overview of how the

protocol functions to make multimedia session connections. Section 4.2 discusses spe-

cific terminology necessary for an understanding of the protocol. Finally, Section 4.3

describes how SIP request and response messages are created, and examples of the

two request messages used in the research are analyzed.

4.1 Overview of How SIP Works

4.1.1 The Purpose of SIP. In 1999, Henning Schulzrinne of Columbia Uni-

versity submitted the plan for a protocol to establish and control multiparty multi-

media sessions, and was approved by the IETF as RFC 2543, the Session Initiation

Protocol [Ubi08]. According to the updated version of the protocol, IETF RFC 3261,

“SIP is an application-layer control protocol that can establish, modify, and terminate

multimedia sessions (conferences) such as Internet telephony calls” [RFC02]. The goal

of SIP is not to exchange data between participants; rather, its purpose is to allow

the participants to find one another, and to manage the data connection one estab-

lished. This allows SIP to used for a large number of data transfer applications, such

as interactive gaming, media on demand, and voice or video conferencing [Ubi08].

The Session Initiation Protocol provides for the following basic requirements for

setting up, managing, and tearing down communication sessions [RFC02]:

• User Location: Finding the address of the end system to be used for the com-

munication.

• User Availability: Determining if the party being called is willing to join the

communication.

• User Capabilities: Determining what type of communications both parties use

for communication.

55

• Session Setup: Establishment of the communication session parameters for both

parties.

• Session Management: Governing the transfer of data, terminating communica-

tion sessions, and modifying session parameters.

Because SIP is an open source protocol, it is rapidly becoming the de facto

standard for multimedia session control. SIP is currently used by the popular VoIP

provider Vonage [Cis02], by Microsoft for its MSN Messenger system [Ubi08], and by

Yahoo! for its Yahoo! Messenger system [Cor05]. SIP has also been selected by the 3G

Community to be its session control protocol for the 3G cellular network [Ubi08], and

Google is planning to incorporate SIP into the protocol used by its popular Google

Talk service [Goo08].

4.1.2 Making a VoIP Call Using SIP. Figure 4.1 shows how the Session

Initiation Protocol is used to make a phone call from one VoIP client to another VoIP

client. As shown in the figure, when making a SIP call, the following occurs [RFC02]:

1. The call originator’s SIP client sends an INVITE request to the proxy server.

2. The proxy server queries the registrar server for the address of the recipient’s

SIP client. At the same time, the proxy server sends a message to the call

originator indicating that it is attempting to connect the call.

3. The registrar server responds to the proxy server with an IP address where the

recipient can be reached.

4. The proxy server forwards the INVITE message to the call recipient.

5. The recipient’s SIP client responds that the phone is ringing and is awaiting the

recipient to accept the call. The message also contains the IP address and port

number of the call recipient for a direct connection at a later time.

6. When the recipient accepts the call, a message is sent from the recipient’s SIP

client to the proxy server indicating that the call has been answered.

56

Figure 4.1: How the Session Initiation Protocol Works

7. The proxy server forwards the call answer message to the originator’s SIP client.

8. The call originator’s SIP client then sends a call acknowledgment directly to the

call recipient’s SIP client, completing the three-way handshake and beginning

the communication session.

9. After the call is completed, one of the parties hangs up, generating a BYE

message to the other caller and to the proxy server.

10. The other caller sends an confirmation of the BYE message, ending the SIP

connection.

4.2 Terminology

The Session Initiation Protocol uses a specific lexicon to describe different as-

pects of the protocol’s components and functions. Outlined below are some of the

most common terms when describing how SIP works, and are used throughout this

chapter [RFC02].

57

4.2.1 Call. A call is an informal term that describes some kind of communi-

cation between peers that is set up using the SIP protocol. The communication may

consist of any type of voice-only or multimedia conversation.

4.2.2 Message. A message is a set of data sent between elements of the SIP

protocol. Messages are usually in the form of either requests or responses.

4.2.3 Proxy Server. A proxy server is a machine that performs the functions

of both a server and a client for the purpose of routing requests between clients and

servers. When it receives a request from a client, the proxy server queries the registrar

server to retrieve the message recipient’s addressing information, then forwards the

request to the recipient on behalf of the sender.

4.2.4 Registrar Server. A registrar server contains a database of the loca-

tions of all SIP clients within a network domain. When a call is initiated by a client,

the client’s proxy server will query the registrar server and retrieve the recipient’s IP

address, if it resides in the same domain as the sender.

4.2.5 Requests and Responses. A request is a SIP message that is sent from

a client to a server in order to cause the server to perform some action. A response

is a SIP message sent from a server to a client that contains the status of the request.

4.2.6 SIP Uniform Resource Identifier. A SIP Uniform Resource Identifier

(URI) is the address where a SIP client can be found on a network. It uses the same

user@host format as an email address, and usually contains a user name and a host

name. In SIP messages, the SIP URI is prefaced by the sip: identifier. For example,

sip:alice@afit.edu and sip:2001@10.1.1.1 are both valid SIP URIs. For the

purposes of this research, the terms SIP URI and phone number are interchangeable.

58

4.3 SIP Messages

4.3.1 Request Messages. SIP request messages are plain text messages used

to communicate information from a client to a server in order to invoke some action by

the server. The SIP specification defines six types of request messages, called request

methods [RFC02]:

• REGISTER: Registers a client’s contact information with a registrar server.

• INVITE: Used to initiate a SIP connection from one client to another.

• ACK: Sent by the call initiator to confirm the reception of a response message.

• CANCEL: Cancels a pending SIP request.

• BYE: Used to terminate a SIP connection session.

• OPTIONS: Used for querying servers about their capabilities.

All SIP request message headers use the same general format. The first line of

the header must contain the Request-Line field, which contains the request method,

the recipient’s address, and the protocol version. All other header fields may be placed

in any order. Listed below are some of the most common fields found in SIP request

messages [RFC02]:

1. Request-Line. A string containing a request method, the SIP URI of the

message’s recipient, and the SIP version number.

2. Via. A string containing the SIP version number and transport protocol used

(TCP or UDP), the address where the sender expects responses to be sent, and a

branch parameter which is a unique alphanumeric string that uniquely identifies

the request transaction.

3. Max-Forwards. This is the maximum number of hops a request can transit en

route to the destination address. The integer is decremented by one every time

it transits a router. If the counter reaches 0 before reaching its destination, the

59

request will be rejected. For most clients and servers, this value is initially set

to 70 [RFC02].

4. Contact. This field contains the SIP URI that represents a direct route to the

sender’s SIP client.

5. To. This field specifies the SIP URI of the request message’s intended recipient.

The field may also contain the display name associated with the recipient’s SIP

URI.

6. From. This field specifies the SIP URI of the request message’s originator. Like

the To field, this may contain both the display name and the SIP URI of the

sender.

7. CSeq. A string that consists of an integer that serves to order transactions and

the request method from the Request-Line. The start number may be any

arbitrary 32-bit unsigned integer less than 231, and is incremented by one for

each additional transaction message sent during the call.

8. Call-Id. An alphanumeric string that acts as a unique identifier for the series

of messages associated with a single call. This string must be the same for

all messages sent during the call. The RFC also recommends that the strings

be cryptographically random identifiers to avoid possible session hijacking and

unintentional Call-Id collisions [RFC02].

9. Allow. A string containing the methods supported by the SIP client that is

sending the message.

10. Content-Type. A string containing the description of the message body.

11. User-Agent. This field contains information about the client that sent the

message.

12. Content-Length. An integer representing the number of bytes contained in the

message body.

60

In this research, the INVITE and BYE requests are captured and examined by

the experimental apparatus to determine the originator and recipient of the SIP call.

Examples of these two request messages are described in detail below.

4.3.1.1 INVITE Request Example. The following INVITE message

is taken from an actual SIP call made from one X-Lite VoIP soft phone [Cor08]

to another X-Lite soft phone via an Trixbox registrar/proxy server [Tri08]. This

particular message is from the originator at SIP URI 2002@10.1.1.50 and is sent to

the SIP URI 2001@10.1.1.50. The packet’s header is shown below:

INVITE sip:2001@10.1.1.50 SIP/2.0

Via: SIP/2.0/UDP 10.1.1.2:7887;branch=z9hG4bK-d87543-

bc490705ed79367c-1--d87543-;rport

Max-Forwards: 70

Contact: <sip:2002@10.1.1.2:7887>

To: "2001"<sip:2001@10.1.1.50>

From: "Tester Two"<sip:2002@10.1.1.50>;tag=e07be27e

Call-ID: MTA3ZTZlM2U4ZjRlZDY5ODJmOTMyYTFmMWZiZmFmZTM.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY,

MESSAGE, SUBSCRIBE, INFO

Content-Type: application/sdp

User-Agent: X-Lite release 1011s stamp 41150

Content-Length: 406

Deconstructing this example, the following information can be extracted:

• Destination SIP URI of the message: 2001@10.1.1.50

• SIP version number: 2.0

• IP address and port number to which the sender expects responses to this re-

quest: 10.1.1.2:7887

61

• Number of forwards left in this message: 70

• IP address and port number of a direct route to contact the sender of the

message: 10.1.1.2:7887

• Display name and SIP URI of the eventual recipient of the message: “Tester

One”, 2001@10.1.1.50

• Display name and SIP URI of the originator of the message: “Tester Two”,

2002@10.1.1.50

• Type of SIP client used to send the message: X-Lite release 1011s

• Length of the message body: 406 bytes

In this example, the call originator sends the INVITE message to the Trixbox

proxy/registrar server at IP address 10.1.1.50, where the server looks up the recipient’s

address, modifies the INVITE message with the updated information, and forwards

the message to the next hop closer to the recipient. Note that the SIP URI in the From

field contains the IP address of the Trixbox registrar server (10.1.1.50). This allows

other SIP clients on the Internet to contact the static address of the registrar server

where the sender’s client is registered. The Contact field, however provides the actual

IP address and port number (10.1.1.2:7887) of the SIP client sending the message,

which the server will then use to deliver the call recipient’s reply to the INVITE

message. The To field contains the SIP URI of the INVITE message’s intended

recipient, which in this case is on the same domain as the sender.

4.3.1.2 BYE Request Example. The following BYE message is taken

from the same SIP call that generated the INVITE message above (note the iden-

tical Call-ID fields). This particular message is from the originator at SIP URI

2001@10.1.1.50 and is sent to the SIP URI 2002@10.1.1.50. The packet’s header is

shown below:

BYE sip:2002@10.1.1.2:7887 SIP/2.0

Via: SIP/2.0/UDP 10.1.1.50:5060;

62

branch=z9hG4bK46506adf;rport

From: "2001"<sip:2001@10.1.1.50>;tag=as1b5be240

To: "Tester Two"<sip:2002@10.1.1.50>;tag=e07be27e

Call-ID: MTA3ZTZlM2U4ZjRlZDY5ODJmOTMyYTFmMWZiZmFmZTM.

CSeq: 102 BYE

User-Agent: Asterisk PBX

Max-Forwards: 70

Content-Length: 0

In this example, the Via field shows that this message is actually from the

Trixbox server at IP address 10.1.1.50:5060, and is being forwarded to SIP URI

2002@10.1.1.50 on behalf of SIP URI 2001@10.1.1.50. The fact that the User-Agent

is an Asterisk PBX confirms this fact.

4.3.2 Response Messages. Response messages differ from request messages

in that they have a status line as the first line of the message. The status line

consists of the SIP version followed by a Status-Code and its Reason-Phrase. Table 4.1

describes the main types of Status-Codes. Note that the Status-Codes used by SIP are

almost identical to those used by HTTP, with the exception of the 6xx codes [RFC99].

Table 4.1: Status Codes for SIP Response Messages [RFC02]

Status-Code Response Type Meaning

1xx Provisional Request received, continuing to process the request

2xx Success The action was successfully received and accepted

3xx Redirection Further action needs to be taken to complete the request

4xx Client Error Request contains bad syntax or can’t be fulfilled by the server

5xx Server Error Server failed to fulfill an apparently valid request

6xx Global Failure Request cannot be fulfilled at any server

Other than the first line of the message header, response message headers contain

the same fields as request messages. When a client or server generates a response

to a request, the response code is placed in the first line of the header, and the

Via, To, From, Call-ID, and CSeq fields are copied from the request header to the

63

response header. The Contact field is then added which contains the SIP URI that

represents a direct route to the client or server that generated the response.

4.4 Summary

This chapter provides an overview and discussion of the Session Initiation Pro-

tocol. The purpose of the protocol is given, and the services provided by the protocol

are discussed. A typical SIP session is described, and selected terminology is defined.

SIP request and response messages are analyzed, and real world examples of the IN-

VITE and BYE messages are deconstructed. In particular, the SIP INVITE and BYE

packets are identified and analyzed by the forensic tool in order to extract the caller

and receiver SIP URIs, and are also used to determine the beginning and end of the

SIP session.

64

V. Methodology

This chapter presents the methodology used to evaluate the performance of the

TRAPP system using two different metrics: the time required to process a

packet, and the probability of packet intercept under high network utilization. First,

the problem definition, goals and hypotheses, and approach are discussed in Sec-

tion 5.1. Section 5.2 defines the system boundaries. The system and its services are

described in Section 5.3, followed by a detailed description of workload in Section 5.4,

performance metrics in Section 5.5, parameters in Section 5.6, and factors in Sec-

tion 5.7. Then, the evaluation technique is discussed in Section 5.8 followed by a

description of the experimental design in Section 5.9. Finally, the techniques used to

analyze and interpret the data are covered in Section 5.10.

5.1 Problem Definition

5.1.1 Goals and Hypotheses. The objective of this thesis is to develop

a system to identify and track specific digital information being transmitted on a

network using peer-to-peer protocols. The proposed system will detect peer-to-peer

transmissions on a target network, classify them by specific peer-to-peer protocol,

compare the digital file being transmitted against a list of interest, and identify the

sender and recipient by Internet Protocol (IP) address.

The goals of this research are to:

• Construct an FPGA-based system that analyzes traffic on a network, detects

a selected peer-to-peer protocol, compares the digital information being shared

against a list of interest, and in the case of a match, records selected control

packets (“packets of interest”) from the peer-to-peer session in a log file.

• Optimize the system such that it is able to detect and record all packets of inter-

est on the network, even under a heavy (approximately 90 percent utilization)

non-peer-to-peer traffic load.

65

• Modify the system to detect and record control packets of interest belonging to

a second peer-to-peer protocol with no negative impact on overall performance.

It is hypothesized that a system equipped for a single peer-to-peer protocol can

be constructed and optimized such that a packet of interest is detected and recorded on

a network with 90% utilization with at least 95% probability. It is also hypothesized

that the system can be expanded to include a second peer-to-peer protocol while

maintaining at least a 95% probability of intercept for a packet of interest from either

peer-to-peer protocol.

5.1.2 Approach. A hardware-based forensic tool is designed using the Virtex

II Pro FPGA development board [Xil08b] and the BitTorrent peer-to-peer protocol.

Implementing the system on an FPGA allows the software application to directly

access the Ethernet controller buffers, bypassing the rest of the network stack and

increasing the system’s simplicity and speed. Once the system is optimized and

tested using this protocol, the system is expanded to also process the Session Initiation

Protocol, and tested again. Details on the hardware construction of the system are

in Appendix A.

Figure 5.1 shows the overall functionality of the design. When the system

processes a packet, the following occurs:

1. The tool fingerprints the frame received from the network by extracting the first

32 bits of the frame’s payload.

2. The 32-bit fingerprint is then compared to the first 32 bits of a BitTorrent Hand-

shake message, which is 0x13426974 [Bit08], a SIP INVITE message, which is

the ASCII string “INVI”, or a SIP BYE message, which is the ASCII string

“BYE ” [RFC02].

3. If the first word of the frame’s payload is not a match to any of these strings,

the frame is discarded.

66

Figure 5.1: Packet Data Flow through the TRAPP System

4. If the word matches that of a BitTorrent Handshake message, the first 32 bits

of the Handshake’s file info hash is extracted from the frame, and compared

against a list of hashes belonging to files of interest using a binary search.

5. If the word matches that of a SIP message, the first 12 characters of the TO and

FROM SIP URIs are extracted from the frame, and each is compared against a

separate list of SIP URIs of interest using a binary search.

6. If the file info hash/SIP URI is not on the list, the frame is dropped.

67

Figure 5.2: Experiments and Tests Used to Achieve the Research Goals

7. If the file info hash/SIP URI is on the list, the frame is saved in a Wireshark-

readable log file and placed on a Compact Flash card. The frames recorded in

the log file are later analyzed to extract IP address information, which can then

be used to perform tracking and forensic analysis.

As shown in Figure 5.2, this research is divided into two experiments, finding

a software configuration for the system that processes BitTorrent packets of interest

as quickly as possible, and expanding the system to incorporate the SIP protocol

without sacrificing overall performance. Each of the two experiments is comprised

of three tests: calculating packet processing time, calculating probability of packet

intercept under a non-peer-to-peer workload, and calculating probability of packet

intercept under an all-peer-to-peer workload. Overviews of the two experiments are

outlined below.

5.1.2.1 Experiment 1: Finding an Optimal Software Configuration.

The first experiment seeks to determine the optimal hardware/software configuration

of the system that processes BitTorrent packets of interest as quickly and as accurately

as possible. This experiment is split into three parts. First, each hardware/software

68

configuration is tested against several types of packet sizes and formats, and the

amount of processor time needed to process each packet is examined. Second, a series

of BitTorrent packets of interest are sent to each configuration in a high non-peer-

to-peer network utilization environment, and the overall probability of intercept of a

packet of interest is calculated for each configuration. Finally, a series of BitTorrent

packets is sent to the system at near-full network utilization in order to determine the

probability of intercepting multiple packets of interest in a row.

5.1.2.2 Experiment 2: Expanding the Forensic Tool to Incorporate VoIP

Functionality. The second experiment seeks to determine if adding functionality to

process SIP packets in addition to BitTorrent packets degrades overall system perfor-

mance. For this experiment, the optimal configuration found in the first experiment

is modified to also include detection and processing of SIP packets of interest. As

with the first experiment, this experiment consists of three parts. First, the modi-

fied configuration is tested against several types of BitTorrent and SIP packets, and

the amount of time needed to process each packet is examined. Second, a series of

BitTorrent and SIP packets of interest are sent to the modified configuration in a

high network utilization environment, and the probability of intercept of each type

of packet of interest is calculated. The results of this experiment are then compared

against the results of the first experiment to determine if the system’s overall perfor-

mance in processing BitTorrent packets of interest is negatively impacted. Finally, a

series of peer-to-peer packets is sent to the system at near-full network utilization in

order to determine a measure of the probability of intercepting multiple packets of

interest in a row for each peer-to-peer protocol.

5.2 System Boundaries

The System Under Test (SUT) is the TRAPP Forensic Tool System. A block

diagram of the SUT is shown in Figure 5.3. It consists of the following components:

the TRAPP software, the Power PC processor, the system clock, the Ethernet con-

69

Figure 5.3: The TRAPP Forensic Tool System

troller, the Compact Flash card controller, and the RS232 controller. The Component

Under Test (CUT) is the TRAPP software. Specifically, various modifications to the

software execution flow will be compared to the baseline software architecture.

Workload parameters include the type of BitTorrent Packet used, the type of

SIP packet used, and the total network utilization as a percentage of network capacity.

The system parameters consist of the size of the list of interest used by the system,

network speed, the software configuration of the TRAPP system, and the number

and types of peer-to-peer protocols supported by the system. These parameters are

discussed in more detail in Section 5.6. The metrics of the system consist of the time

required to process a packet and the probability of successful intercept of a packet.

5.3 System Services

This system provides a detection and tracking service for certain peer-to-peer

protocols on a local area network gateway to the Internet. The service is success-

ful when a BitTorrent Handshake packet, SIP INVITE packet, or SIP BYE packet

entering the system is detected, its file info hash or SIP URIs extracted and com-

pared against a list of interest, and in the case of a match, its contents copied to

70

a Wireshark-compatible log file. The service is a failure when: a packet of interest

is not detected, a packet of interest is detected but the file info hash or SIP URIs

are not extracted correctly, the file info hash or SIP URI is incorrectly determined

to be not on the list, or the packet fails to be copied correctly to the log file. For

this research, the problem of encountering false positives (for example, the file info

hash or SIP URI is determined to be a match to an item on the list, when in fact

it is not) is not considered, as it is assumed that all log files will be reviewed by a

human administrator, who will be able to correctly determine that the packet is not

of interest.

5.4 Workload

The workload of the SUT consists of two parts, the peer-to-peer packets and

the non-peer-to-peer network traffic load. For the two experimental tests, either one

or both of these workload components are used. Outlined below are the specific peer-

to-peer packets used in the tests and a description of how the non-peer-to-peer traffic

is generated.

5.4.1 BitTorrent and SIP Packets Employed. The peer-to-peer packets

employed for the system’s workload consist of BitTorrent Handshake packets and SIP

INVITE and BYE packets that are loaded with specific file info hashes and SIP URIs.

Listed below are the variations of these packets that comprise the peer-to-peer portion

of the workload.

5.4.1.1 BitTorrent Handshake Packet (Hash on the List). To deter-

mine how the system processes packets that belong to the BitTorrent protocol, and

whose file info hashes are contained in the list of interest, a packet capture file contain-

ing a real-world BitTorrent file transfer is analyzed, and the payload of the Handshake

packet used to set up the peer-to-peer connection is extracted. The file info hash con-

tained in the Handshake packet is then added to the list of interest. The contents of

the sample BitTorrent Handshake packet are shown below.

71

<13 42 69 74 54 6f 72 72 65 6e 74 20 70 72 6f 74 6f 63 6f 6c

00 00 00 00 00 01 00 01

3f fe ce 46 da 61 36 15 2f 25 59 69 07 4a d9 5b 07 fa 08 75

2d 55 54 31 37 37 30 2d f3 9f b2 53 84 dc 26 f6 32 05 e7 be>

Details on how to interpret the contents of the BitTorrent Handshake packets

presented here are in Section 3.7.

5.4.1.2 BitTorrent Handshake Packet (Hash Not on the List). To

determine how the system processes packets that belong to the BitTorrent protocol,

but whose file info hashes are not on the list of interest, the BitTorrent Handshake

packet from the previous section is modified such that the new file info hash does

not match any entry on the system’s list of interest. As shown in the packet payload

below, the third byte of the file info hash (contained in the third line of the contents)

is changed from 0xCE to 0xAA.

<13 42 69 74 54 6f 72 72 65 6e 74 20 70 72 6f 74 6f 63 6f 6c

00 00 00 00 00 01 00 01

3f fe aa 46 da 61 36 15 2f 25 59 69 07 4a d9 5b 07 fa 08 75

2d 55 54 31 37 37 30 2d f3 9f b2 53 84 dc 26 f6 32 05 e7 be>

5.4.1.3 Non-Peer-to-Peer Packet. To determine how the system pro-

cesses packets that do not belong to one of the two peer-to-peer protocols of interest,

a packet is crafted that does not match the parameters of either protocol. As shown

in the packet payload below, this is accomplished by taking a BitTorrent Handshake

packet and changing the first byte of the payload from 0x13 to 0xAA. This change

guarantees that the packet does not match the format of either a BitTorrent packet or

a SIP packet (the packet does not match any known SIP packet since all SIP packet

payloads are written in HTML, which is an ASCII-based language, and the byte 0xAA

is not a valid ASCII character).

<aa 42 69 74 54 6f 72 72 65 6e 74 20 70 72 6f 74 6f 63 6f 6c

72

00 00 00 00 00 01 00 01

3f fe ce 46 da 61 36 15 2f 25 59 69 07 4a d9 5b 07 fa 08 75

2d 55 54 31 37 37 30 2d f3 9f b2 53 84 dc 26 f6 32 05 e7 be>

5.4.1.4 SIP INVITE Packet (SIP URI on the List). To determine

how the system processes packets that belong to the SIP protocol, and whose TO and

FROM SIP URIs are contained in the list of interest, a packet capture file containing

a real-world SIP phone call setup and teardown is analyzed, and the payload of the

INVITE packet used to set up the phone call is extracted. The SIP URIs contained

in the packet are then added to the list of interest. The contents of the sample SIP

INVITE message header are shown below. Lines 6 and 7 of the payload contain

the sender and receiver SIP URIs (2001@10.1.1.50 and 2002@10.1.1.50) that are

compared against the list of interest.

INVITE sip:2001@10.1.1.50 SIP/2.0

Via: SIP/2.0/UDP 10.1.1.2:8228;

branch=z9hG4bK-d87543-ab64a6626128d369-1--d87543-;rport

Max-Forwards: 70

Contact: <sip:2002@10.1.1.2:8228>

To: "2001"<sip:2001@10.1.1.50>

From: "Tester Two"<sip:2002@10.1.1.50>;tag=48662f73

Call-ID: NGM2ZjNmNDkyZGM1NmFmNmUxOGYwZWM5YjU5MTFhMGU.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE,

SUBSCRIBE, INFO

Content-Type: application/sdp

User-Agent: X-Lite release 1011s stamp 41150

Content-Length: 408

Further details on the format of the SIP INVITE packet are found in Section 4.3.

73

5.4.1.5 SIP INVITE Packet (SIP URI Not on the List). To determine

how the system processes packets that belong to the SIP protocol, but whose TO and

FROM SIP URIs are not on the list of interest, a SIP INVITE packet whose SIP

URIs are on the list of interest is modified such that the new SIP URIs not match

any entry on the experiment’s list of interest. As shown in the SIP message header

below, the first four bytes of the TO and FROM SIP URIs (contained in lines 6 and

7 of the contents) are changed from 2001 and 2002 to 9999, which is not on the list

of interest.

INVITE sip:2001@10.1.1.50 SIP/2.0

Via: SIP/2.0/UDP 10.1.1.2:8228;

branch=z9hG4bK-d87543-ab64a6626128d369-1--d87543-;rport

Max-Forwards: 70

Contact: <sip:9999@10.1.1.2:8228>

To: "2001"<sip:9999@10.1.1.50>

From: "Tester Two"<sip:9999@10.1.1.50>;tag=48662f73

Call-ID: NGM2ZjNmNDkyZGM1NmFmNmUxOGYwZWM5YjU5MTFhMGU.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE,

SUBSCRIBE, INFO

Content-Type: application/sdp

User-Agent: X-Lite release 1011s stamp 41150

Content-Length: 408

5.4.1.6 SIP BYE Packet (SIP URI on the List). To determine how

the system processes packets that belong to the SIP protocol, and whose TO and

FROM SIP URIs are contained in the list of interest, the same packet capture file

used above to extract the INVITE packet is again analyzed, and the payload of the

BYE packet used to tear down the phone call is extracted. The contents of the sample

SIP BYE message header are shown below.

74

BYE sip:2002@10.1.1.50 SIP/2.0

Via: SIP/2.0/UDP 10.1.1.1:7946;

branch=z9hG4bK-d87543-181b4b34431d0f61-1--d87543-;rport

Max-Forwards: 70

Contact: <sip:2001@10.1.1.1:7946;rinstance=c1540086ad2a9650>

To: "SANS Student 2"<sip:2002@10.1.1.50>;tag=as1b3919be

From: <sip:2001@10.1.1.1:7946;rinstance=c1540086ad2a9650>;tag=d33db83e

Call-ID: 73a1d1f673e3e4b42cfb4cca38f30aa1@10.1.1.50

CSeq: 2 BYE

User-Agent: X-Lite release 1011s stamp 41150

Reason: SIP;description="User Hung Up"

Content-Length: 0

Further details on the format of the SIP BYE packet are found in Section 4.3.

5.4.2 The Non-Peer-to-Peer Traffic Load. For the probability of intercept

tests in each of the two experiments, a non-peer-to-peer traffic load is used to saturate

the test network to approximately 90 Mbps on the 100 Mbps network. To create the

load, a 1,150,217,528-byte video file, named DFEE-660.avi, is transferred from one

node on the network to another node on the network using the Windows NETBIOS

file transfer protocol. While this transfer is in progress, another node on the network

can transmit peer-to-peer packets of interest into a high-traffic environment.

5.5 Performance Metrics

In order for the system to be effective, it must have a high probability of success-

fully intercepting, processing, and recording those packets on the network that belong

to a peer-to-peer protocol supported by the system, and whose identifiers are on the

lists of interest. By extension, in order for the system to successfully intercept these

packets of interest, it must have the capability to analyze all traffic on a network,

which necessitates the requirement of processing each packet as quickly as possible

for a given set of parameters. Thus, the following performance metrics are defined:

75

• Packet Processing Time: The number of CPU cycles, as measured by the Power

PC processor’s System Timer, that are required to accomplish the following:

determine if a packet has been received by Ethernet controller, inspect the packet

for peer-to-peer protocols, match the packet’s identifier against the appropriate

list, record the packet if necessary, and make the Ethernet controller available

to receive another packet entering the system.

• Probability of Packet Intercept : The probability of a packet, whose format

matches a peer-to-peer protocol supported by the system, and whose identi-

fier matches an entry on a list of interest, being successfully recorded in the

system intercept log.

5.6 Parameters

The parameters of the system are the properties which, when changed, impacts

the performance of the system. These include both system parameters, which char-

acterize the system, and workload parameters, which characterize the workload. The

system and workload parameters for the SUT are described below.

5.6.1 System Parameters.

• Size of List of Interest: This is the size of the list of interest, expressed by the

number of entries in the list. For the BitTorrent protocol, an entry is a 160-bit

file info hash, described in Section 3.5.3. For the SIP protocol, an entry is the

first 12 digits of a SIP-URI, described in Section 4.2. Because the system uses

a binary search algorithm to perform the hash/SIP URI matching process, each

doubling of the list size will add a maximum of one comparison to the total

algorithm execution time. For this research, a sample list size of 1000 entries is

used for both the file info hash list and the SIP URI list.

• Network Speed: This is the maximum speed of network data entering the system

through the Ethernet connection. The Ethernet controller on the Xilinx II Pro

76

board used in this research is capabable of connecting to either a 10 Mbps or a

100 Mbps network. For this research, the 100 Mbps connection option is used.

• TRAPP Software Configuration: The software code used to execute TRAPP

functions using the Power PC processor on the FPGA. As procedures and fea-

tures contained in the software are added, removed, or modified, the overall

functions and performance of the system are affected. A full description of each

configuration used in the TRAPP system is contained in Section 5.7.

• Peer-to-Peer Protocols Supported: This is the set of peer-to-peer protocols that

the system is capable of detecting and analyzing. For the first experiment, the

BitTorrent protocol is the only member of this set. In the second experiment,

the Session Initiation Protocol is added to the set.

5.6.2 Workload Parameters.

• BitTorrent Packet Type: In this study, three different types of BitTorrent pack-

ets are used: a BitTorrent Handshake packet whose file info hash matches an

entry on the list of interest, a BitTorrent Handshake packet whose file info hash

does not match an entry on the list of interest, and a packet that is not a prop-

erly formatted BitTorrent Handshake packet. For a complete description of the

packets, see Section 5.4.1.

• SIP Packet Type: Three different types of SIP packets are used in this study:

a SIP INVITE packet whose TO and FROM SIP URIs match an entry on the

list of interest, a SIP INVITE packet whose TO and FROM SIP URIs do not

match an entry on the list of interest, and a SIP BYE packet whose TO and

FROM SIP URIs match an entry on the list of interest. A complete description

of the packets is in Section 5.4.1.

• Network Utilization: This is the total amount of traffic entering the system.

For the first test, the network utilization is limited to single packets injected

into the system to measure the time required to fully process the packet. For

77

the second test, a load of between 89.6 Mbps and 89.7 Mbps is injected into

the system, which equates to approximately a 90% utilization of the 100 Mbps

Ethernet connection. For the third test, a continuous stream of identical peer-to-

peer packets of interest is injected into the system, with the network utilization

varying with the type of peer-to-peer packet.

5.7 Factors

This section outlines the factors selected from the system and workload parame-

ters. These factors are varied in Experiment 1 to determine the software configuration

that returns the best performance in processing various types of BitTorrent packets.

They are varied in Experiment 2 to measure the impact on performance of adding

a second peer-to-peer protocol to the optimal configuration found in Experiment 1.

Table 5.1 and Table 5.2 summarize the factors chosen and their levels for the two

experiments.

Table 5.1: Factor Levels for Experiment 1
Factor Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Configuration Control User Alerts Dual Buffer Packet Write Cache Combined

Packet Type Non-P2P BT On List BT Off List

Table 5.2: Factor Levels for Experiment 2
Factor Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Configuration Optimized

(BT + SIP)

Packet Type Non-P2P BT BT SIP INVITE SIP INVITE SIP BYE

On List Off List On List Off List On List

5.7.1 Configuration. The software configuration is the factor designated

as the Component Under Test. It controls all aspects of the system, including what

information is provided to the user, how network data is captured and analyzed, and

how packets of interest are stored. The six levels chosen for this factor are detailed

below.

78

5.7.1.1 Control Configuration. In order to design and build a proto-

type as quickly as possible, the system is initially implemented as an embedded soft-

ware application using the Power PC core on the Virtex II Pro FPGA development

board. Xilinx-provided drivers and built-in functions are used where possible, with

custom software built to accomplish the following functions: read the data file con-

taining the file info hashes of the list of interest, perform packet payload inspections,

copy BitTorrent Handshake frames to on-chip RAM, perform the hash matching, and

write the frame data to the log file on the Compact Flash card.

Listed below are the salient features of the Control configuration:

• All modules are executed in software. The only hardware modification made

is to enable the Ethernet controller to operate in promiscuous mode (see Sec-

tion A.3 for details).

• To simplify the software code as much as possible, the Ethernet controller is

limited to one receive buffer, caching is not used, and no user alerts are generated

for the user.

• Packets of interest are copied three times. The first copy is from the Ethernet

controller buffer to block RAM upon detection of the 32-bit BitTorrent signature

in the packet’s payload. If the file info hash is found on the list, the frame is

copied from RAM to a character array, and then from the array to the log file

on the Compact Flash card.

• Frames are copied to the Compact Flash card as they are processed. The system

waits until the current frame has been completely processed and sent to the

Compact Flash card before beginning to process another frame.

5.7.1.2 User Alerts Configuration. This modification adds to the

system user notifications, via the serial port and HyperTerminal, of any peer-to-peer

control packets that are found by the system. The messages consist of the type of

peer-to-peer packet found, whether the file info hash matches an entry on the list of

79

interest, and the file info hash’s position on the list of interest. Because the serial port

runs at a much lower speed than the CPU and the processing bus, it is hypothesized

that sending any data over the RS232 connection causes a dramatic slowdown in

overall processing time.

5.7.1.3 Packet Write Configuration. In this modification, all captured

packets of interest are stored within a RAM block instead of writing them individually

to the Compact Flash card. When the system is shut down, all data is then transferred

from the block RAM to the Compact Flash card. By storing the data within RAM,

the only write functions to the Compact Flash card are performed before packet

sniffing begins and after packet sniffing terminates. It is hypothesized that writing to

the Compact Flash card is a high-latency process, and that its removal will result in

a significant processing time savings.

5.7.1.4 Dual Buffer Configuration. This modification adds a second

receive buffer to the Ethernet controller [Pro06]. This allows one frame to be read

and processed while another frame is received. The goals for this optimization are to

give the comparison and copying routines additional time to execute, and limit the

number of frames dropped due to a full receive buffer.

5.7.1.5 Cache Configuration. This modification enables the instruc-

tion and data caches for the Power PC processor. By allowing the FPGA to cache

processor instructions, heap data, and stack data instead of performing multiple reads

and writes to block RAM, a significant amount of processing time should be saved.

5.7.1.6 Combined Configuration. This is the combined case of the

CUT incorporating the Packet Write, Dual Buffer, and Cache optimizations into a

single system. The goal for the integration is to take advantage of each optimization

individually and to possibly gain synergistic time savings from the combination of all

four optimizations.

80

5.7.2 Packet Type. This is the format, protocol, and size of the packets

entering the system. A sufficient cross section of peer-to-peer packet sizes and types

are crucial to determining how the system will process various packets of interest and

packets not of interest. The six levels chosen for this factor are listed below. Detailed

descriptions of each packet format are found in Section 5.4.1.

• Non-Peer-to-Peer Packet

• BitTorrent Handshake Packet On the List of Interest

• BitTorrent Handshake Packet Not On the List of Interest

• SIP INVITE Packet On the List of Interest

• SIP INVITE Packet Not On the List of Interest

• SIP BYE Packet On the List of Interest

Note that since a SIP BYE Packet Not on the List of Interest and a SIP INVITE

Packet Not on the List of Interest will be treated the same by the system, this type

of SIP BYE packet is not included as a factor level. Except for the first line of the

message header, each packet has identical header contents, and since the SIP URI of

neither packet is on the list, neither frame will be copied by the system to the log file.

Thus, the two packet types will be processed identically by the system.

5.8 Evaluation Technique and Environment

5.8.1 Experimental Environment. To conduct the two experiments out-

lined in Section 5.1.2, the experimental setup shown in Figure 5.4 is created. The

experimental environment consists of the following components:

• One Cisco Catalyst 2900XL 100 Mbps switch, configured with 22 standard ports

and 2 spanning ports.

• Two Dell Inspiron Windows XP Service Pack 2 laptops loaded with uTorrent

1.7.7 [uTo08], a popular BitTorrent client, and X-Lite 3.0 [Cor08], a popular

VoIP phone client, and connected to the switch.

81

Figure 5.4: Block Diagram of the Experimental Setup

• One Dell Inspiron laptop that is dual-equipped with the BackTrack 2.0 Linux

environment [RE08] and Windows XP Service Pack 2, and is connected to the

switch. The BackTrack environment contains the Hping 3.0.0 [Hpi08] utility,

which is used to inject the crafted BitTorrent and SIP packets. The Windows

environment contains the VMWare 2.0.5 [VMW08] utility to run a TrixBox

2.2 [Tri08] SIP proxy and registrar server for use with the X-Lite clients.

• One Virtex II Pro FPGA system (the SUT), which is connected to a spanning

port on the switch.

• One Dell Inspiron Windows XP Service Pack 2 laptop loaded with Wireshark

1.0.1 [Wir08], which is connected to a second spanning port as a control packet

sniffer.

• One Dell Windows XP Service Pack 2 laptop, which is connected to the SUT

and is used to configure and load the Virtex II Pro via USB port. The laptop

is also equipped with TTermPro [Pro08a], a HyperTerminal application used to

receive alerts from the SUT via RS232 serial port.

The actual setup used in the experiments is shown in Figure 5.5.

82

Figure 5.5: Experimental Setup for the Three Performance Tests

5.8.2 Evaluation Techniques. Outlined below are the tests used for collecting

data on the packet processing time and probability of packet intercept metrics for each

experiment.

5.8.2.1 Calculating Packet Processing Time. The first test consists

of a series of packets sent from the Linux laptop to one of the Windows laptops via

the Cisco switch. For each run, a series of 50 crafted packets are sent, and the CPU

cycles needed by the system to process each packet is recorded. The crafted packets

are described in detail in Section 5.4.1.

A total of 50 identical packets are sent one second apart through the network.

Based on the testing of several different sample sizes, 50 packets is the minimum sam-

ple size that results in sufficiently small confidence intervals to perform a meaningful

comparison between system configurations. To ensure the independence of each trial,

one second is chosen as the interarrival interval. To determine the number of cycles

required to process each packet received by the system, a Power PC System Timer

time stamp is taken prior to the beginning of the processing, and another time stamp

83

is taken immediately after the processing routine ends. To compute the number of

cycles required to process the packet, the two values are simply subtracted from each

other. Since the Power PC processor in the SUT is configured to run at 300 MHz,

to convert the processing time from clock cycles to standard time units, the formula

(time = cycles/300) is used, where cycles is the number of cycles as determined by

the System Timer and time is the time to process the packet in microseconds.

5.8.2.2 Calculating Probability of Intercept Under a Non-Peer-to-Peer

Load. The second test consists of a series of packets sent from the Linux laptop

to one of the Windows laptops via the Cisco switch. For this test, however, an

additional non-peer-to-peer traffic load, as described in Section 5.6.2, is generated on

the network. For this test, the number of crafted packets successfully intercepted and

processed by the system is recorded. The crafted packets used by the Linux laptop

are described in detail in Section 5.4.1.

For each test, a series of three hundred crafted packets are injected into the

network 500 milliseconds apart. By injecting the packets 500 milliseconds apart, the

results of each trial (either the packet was captured or not captured) are assured to

be independent of each other. Based on the testing of several different sample sizes,

300 packets is a good sample size to produce a binomial distribution that results in

sufficiently small confidence intervals to perform a meaningful comparison between

system configurations. Again, to ensure the independence of each trial, i.e., to ensure

that the system is not processing one crafted packet when another one arrives at the

system, the packets are sent 500 milliseconds apart.

When performing this test, another important parameter is the network uti-

lization or network load, defined in Section 5.4. To determine the minimum overall

network load, the Wireshark utility on the laptop that is connected to the second

spanning port is used to analyze all traffic sent during the test. At the conclusion of

the test, a capture summary is extracted by selecting the Statistics -> Summary

menu option, and recording the Average MBit/sec field from the Captured column.

84

Because Wireshark itself may not capture all packets on the network, this value is

assumed to be the minimum network traffic load.

5.8.2.3 Calculating Probability of Intercept Under an All-Peer-to-Peer

Load. The third test also consists of a series of packets sent from the Linux laptop

to one of the Windows laptops via the Cisco switch. As in the first test, a series

of crafted packets, described in detail in Section 5.4.1, are sent across the network.

However, for this test, the packets are sent as quickly as possible from the Linux

laptop using the Hping --flood switch.

In order to determine how many packets were sent by the Linux laptop, a

particular feature of the Hping program is exploited. When the Hping program sends

a series of packets, each packet contains a different source port, and the source port

number is incremented by one each time a packet is transmitted. Thus, for a given

series of packets, the total number of packets sent in the series can be calculated by

subtracting the first packet’s source port number from the last packet’s source port

number.

In this test several thousand packets are sent over the network as quickly as

possible using Hping, and the flood is then terminated manually. To determine the

probability of packet intercept, the following procedure is used:

1. Inspect the capture log file and record the number of frames successfully cap-

tured by the system.

2. Record the source port number of the first packet in the log file, and the source

port number of the last packet in the log file.

3. Apply the formula

P (packet intercept) =
number of packets in log

Port(last packet) − Port(first packet)
(5.1)

to compute the probability of packet intercept.

85

When performing this test, another important parameter is the network uti-

lization or network load, defined in Section 5.6.2. To determine the minimum overall

network load, the Wireshark utility on the laptop that is connected to the second

spanning port is used to analyze all traffic sent during the test. At the conclusion of

the test, a capture summary is extracted by selecting the Statistics -> Summary

menu option, and recording the Average MBit/sec field from the Captured column.

Because Wireshark itself may not capture all packets on the network, this value is

assumed to be the minimum network traffic load.

5.9 Experimental Design

The overall experimental design for this study consists of two experiments, each

with a partial-factorial design with factor levels selected from Tables 5.1 and 5.2. The

overall design consists of a total of 3,900 trials, where each trial consists of a crafted

test packet sent through the network to the SUT. Details of the trial distribution

between the tests of each experiment are outlined below.

5.9.1 Experiment 1: Finding an Optimal Configuration. The first experi-

ment, Finding an Optimal Software Configuration, consists of 900 packets (6 config-

urations * 3 workloads * 50 packets) sent to the experimental setup to compute the

packet processing times and 1,800 packets (6 configurations * 1 workload * 300 pack-

ets) sent to the setup to compute the probability of packet intercept for a non-peer-to-

peer workload. To compute the probability of packet intercept for an all-BitTorrent

workload, several hundred packets are sent for each of the six configurations and the

“BT On List” packet type.

The configurations and workloads for this experiment are given in Table 5.1.

For the packet processing time test, all configuration and workload factor levels are

used. For the probability of packet intercept (non-peer-to-peer workload) test, all six

configurations and the “BT On List” packet type are used. For the probability of

86

packet intercept (all-BitTorrent workload) test, all six configurations and the “BT On

List” packet type are used.

5.9.2 Experiment 2: Expanding the System. The second experiment, Ex-

panding the Tool to Incorporate VoIP, consists of 300 packets (1 configuration *

6 workloads * 50 packets) sent to the experimental setup to compute the packet pro-

cessing times and 900 packets (1 configuration * 3 workloads * 300 packets) sent to

the setup to compute the probability of packet intercept. To compute the probability

of packet intercept for an all-peer-to-peer workload, several hundred packets will be

sent for each of the 3 peer-to-peer packet types.

The configurations and workloads for this experiment are given in Table 5.2.

For the packet processing time test, all six workload factor levels are used. For the

probability of packet intercept (non-peer-to-peer workload) test, the “BT On List”,

“SIP INVITE On List”, and “SIP BYE On List” packet types are used. For the

probability of packet intercept (all-peer-to-peer workload) test, the “BT On List”,

“SIP INVITE On List”, and “SIP BYE On List” packet types are used.

5.10 Analysis and Interpretation of Results

5.10.1 Experiment 1: Finding an Optimal Configuration. The analysis of

this experiment consists of performing a series of one-variable statistical computa-

tions and two-variable comparison tests to prove or disprove the hypothesis that a

system equipped for a single peer-to-peer protocol (in this case, BitTorrent) can be

constructed and optimized such that a packet of interest is detected and recorded

with at least 95% probability. In addition, by analyzing the results of the probability

of packet intercept (all-peer-to-peer workload) test for each configuration, a figure of

merit is calculated for the probability of successfully intercepting multiple sequential

packets of interest on a high utilization network.

87

5.10.1.1 Calculating Packet Processing Time. For each combination

of CUT configuration and workload, a one variable t-test is performed to determine

the mean packet processing time in CPU cycles, the standard deviation, the standard

error of the mean, and a 95% confidence interval for the mean. Then, for each

workload, the mean packet processing time of each CUT configuration is compared

to the packet processing time of the Control configuration, and the reasons for any

increase or decrease in processing time is analyzed.

5.10.1.2 Calculating Probability of Intercept Under Non-Peer-to-Peer and

All-Peer-to-Peer Loads. For the configuration and workload combinations outlined

in Section 5.9.1, a one proportion confidence interval analysis is performed on the bi-

nomial variable to determine the probability of packet intercept and a 95% confidence

interval for the proportion. This generates a series of basic statistics from which to

perform the two proportion hypothesis testing.

Next, a one-sided statistical hypothesis test using two proportions and a 95%

confidence interval is performed for each of the five modification CUT configurations

against the Control configuration. The results of these hypothesis tests determine

which of the modification CUT configurations show statistically significant improve-

ment over the Control configuration.

Finally, a one-sided statistical hypothesis test using two proportions and a 95%

confidence interval is performed for the Combined configuration against the other four

modification CUT configurations and against the Wireshark software-based packet

sniffer. The results of these hypothesis tests determine if the improvement of the

combined software configuration over each individual modification is statistically sig-

nificant, and also determine if the hardware-based SUT is at least as effective as the

software-based Wireshark system in intercepting single BitTorrent packets in a heavy

non-peer-to-peer traffic environment and back-to-back BitTorrent packets of interest.

88

5.10.2 Experiment 2: Expanding the System. The analysis of this exper-

iment consists of performing a series of one-variable statistical computations and

two-variable comparison tests to prove or disprove the hypothesis that the system

can be expanded to include a second peer-to-peer protocol (in this case, SIP) while

maintaining at least a 95% probability of intercept for a packet of interest from either

peer-to-peer protocol. By analyzing the results of the probability of packet intercept

(all-peer-to-peer workload) test for each workload, a figure of merit is calculated for

the probability of successfully intercepting multiple sequential packets of interest on

a high utilization network.

5.10.2.1 Calculating Packet Processing Time. For each combination

of CUT configuration and workload, a one variable t-test is performed to determine

the mean packet processing time in CPU cycles, the standard deviation, the standard

error of the mean, and a 95% confidence interval for the mean. Then, for the “Non-

P2P”, “BT On List”, and “BT Off List” packet types, the mean packet processing time

of the Optimized (BT + SIP) configuration is compared to the packet processing time

of the Combined configuration from Experiment 1, and the reasons for any increase

or decrease in processing time are analyzed.

5.10.2.2 Calculating Probability of Intercept Under Non-Peer-to-Peer and

All-Peer-to-Peer Loads. For the configuration and workload combinations outlined

in Section 5.9.2, a one proportion confidence interval analysis is performed on the bi-

nomial variable to determine the probability of packet intercept and a 95% confidence

interval for the proportion. This generates a series of basic statistics from which to

perform the two proportion hypothesis testing.

Then, a one-sided statistical hypothesis test using two proportions and a 95%

confidence interval is performed for the Optimized (BT + SIP) configuration from

Experiment 2 against the Combined configuration from Experiment 1. The result of

this hypothesis test determines if there is any statistical difference in the probability

of packet intercept of single BitTorrent packets in a heavy non-peer-to-peer traffic

89

environment and back-to-back BitTorrent packets of interest, when the system is

expanded to included SIP functionality.

5.11 Summary

This chapter discusses the methodology used to evaluate the performance of

the digital forensic tool under various workloads and network utilization scenarios.

Performance is evaluated using a real-world experimental design and is based on two

performance metrics: packet processing time and probability of packet intercept. Two

partial-factorial experiments using three different tests are performed to measure the

impact of varying the software configuration and the peer-to-peer input workload on

overall system performance. An analysis is then performed on the data through a

series of statistical tests to determine the effectiveness of the system using various

configurations and workloads.

90

VI. Results and Analysis

This chapter presents and analyzes the experimental results. First, the results

for each of the performance metrics for the three tests used in Experiment 1 are

discussed in Section 6.1. Next, the results of the performance metrics for the three

tests in Experiment 2 are presented in Section 6.2. Finally, an overall analysis of the

results is given in Section 6.3.

6.1 Results and Analysis of Experiment 1

6.1.1 Test 1: Calculating Packet Processing Time. The first test performed

on the system is used to determine how many CPU cycles are required to process each

type of packet. Outlined below are the results of the Calculating Packet Processing

Time test for each of the three packet type factors listed in Table 5.1.

6.1.1.1 Non-Peer-to-Peer Packet Workload. Table 6.1 shows the re-

sults of a one-variable t-test performed on each of the six configurations using the

Non-Peer-to-Peer (labeled “Non-P2P” in Table 5.1) packet type. The table gives the

number of trials, the mean number of CPU cycles required to process the non-peer-

to-peer packet, the standard deviation, the standard error of the mean, and a 95%

confidence interval for the mean.

Table 6.1: Packet Processing Times for Non-BitTorrent Packets
Configuration N Mean Standard Standard Error Confidence Interval

(Events) Deviation of the Mean (95%)

Control 50 1206.00 0.00 0.00 (1206.00, 1206.00)

User Alerts 50 1152.00 0.00 0.00 (1152.00, 1152.00)

Dual Buffer 50 1344.00 109.10 15.40 (1313.00, 1375.00)

Packet Write 50 1146.00 0.00 0.00 (1146.00, 1146.00)

Cache 50 276.00 0.00 0.00 (276.00, 276.00)

Combined 50 303.50 25.76 3.64 (296.18, 310.82)

Looking at the table, the initial assumption would be that only two of the six

configurations, Dual Buffer and Combined, are stochastic processes. The other four,

Control, User Alerts, Packet Write, and Cache, are all deterministic, as shown by

91

the null values for standard deviation and standard error of the mean. However,

looking closer at the raw data, contained in Appendix B, the packet processing times

in the Dual Buffer and Combined configurations in fact alternate between two values,

which shows that these too, are deterministic processes. Thus, when processing non-

peer-to-peer packets, every configuration results in a deterministic packet processing

time.

Figure 6.1 shows 95% confidence interval plots of the packet processing time

required for a packet that does not belong to the BitTorrent protocol. The number

of cycles required ranges from 276 cycles to 1,344 cycles, which equates to a range of

0.92 to 4.48 microseconds per packet.

Looking at both the table and the figure, the following qualitative observations

are noted:

• Enabling the User Alerts has no negative impact on packet processing time over

the Control configuration. This is due to the fact that no alerts are generated

when a non-peer-to-peer packet is processed.

• Adding a second receive buffer adds additional processing time to the Control

configuration baseline. This is due to the additional software processing required

to process packets from two receive buffers instead of one.

• Employing the alternate packet writing scheme has very little positive impact

(less than 5%) on packet processing time over the Control configuration. This

is due to the fact that nothing is written to the log file when a non-peer-to-peer

packet is processed.

• A significant number of cycles are saved by enabling the instruction and data

caches.

• The packet processing time for the Combined configuration is greater than that

of the Cache configuration due to the Combined configuration incorporating

the Dual Buffer Optimization, while the Cache configuration employs a single

receive buffer.

92

Figure 6.1: Interval Plots of Packet Processing Times for Non-BitTorrent Packets

6.1.1.2 BitTorrent Packet Not On the List Workload. Table 6.2 shows

the results of a one-variable t-test performed on each of the six configurations using

the BitTorrent Packet Not On the List (labeled “BT Off List” in Table 5.1) packet

type. The table gives the number of trials, the mean number of CPU cycles required

to process the BitTorrent Handshake packet, the standard deviation, the standard

error of the mean, and a 95% confidence interval for the mean.

Table 6.2: Packet Processing Times for BitTorrent Packets Not On the List
Configuration N Mean Standard Standard Error Confidence Interval

(Events) Deviation of the Mean (95%)

Control 50 7296.00 0.00 0.00 (7296.00, 7296.00)

User Alerts 50 1044756 730 103 (1044549, 1044963)

Dual Buffer 50 7770.00 0.00 0.00 (7770.00, 7770.00)

Packet Write 50 7593.00 0.00 0.00 (7593.00, 7593.00)

Cache 50 1145.00 0.00 0.00 (1145.00, 1145.00)

Combined 50 1205.00 0.00 0.00 (1205.00, 1205.00)

93

Looking at the table and the raw data, only one of the six configurations, User

Alerts, is a stochastic process. The other five, Control, Dual Buffer, Packet Write,

Cache, and Combined, are all deterministic, as shown by the null values for standard

deviation and standard error of the mean. Thus, for BitTorrent traffic containing

file info hashes that are not on the list of interest, the only configuration that does

not result in a deterministic packet processing time is the User Alert configuration.

The primary reason for the stochastic nature of the User Alert Configuration is that

information sent to the user via RS232 port is subject to processor bus contention

issues on the FPGA board, resulting in a variable transmission time.

Figure 6.2 shows 95% confidence interval plots of the packet processing time

required for a packet that does not belong to the BitTorrent protocol. The number

of cycles required ranges from 1,145 cycles to 7,770 cycles, which equates to a range

of 3.82 to 25.90 microseconds per packet.

Looking at both the table and the figure, the following qualitative observations

are noted:

• Enabling the User Alerts results in a significant increase in packet processing

time, due to the slow rate of RS232 data transmission compared to CPU speed.

Because the packet processing time penalty for enabling User Alerts is so high,

for clarity purposes, the User Alerts configuration does not appear in the figure.

• Adding a second receive buffer adds additional processing time to the Control

configuration baseline. This is due to the additional software processing required

to process packets from two receive buffers instead of one.

• Employing the alternate packet writing scheme has very little negative impact

(less than 5%) on packet processing time over the Control configuration. This is

due to the fact that nothing is written to the log file when a BitTorrent packet

that is not of interest is processed.

• A significant number of cycles are saved by enabling the instruction and data

caches.

94

Figure 6.2: Interval Plots of Packet Processing Times for BitTorrent Packets Not
On the List

• The packet processing time for the Combined configuration is greater than that

of the Cache configuration due to the Combined configuration incorporating

the Dual Buffer Optimization, while the Cache configuration employs a single

receive buffer.

6.1.1.3 BitTorrent Packet On the List Workload. Table 6.3 shows the

results of a one-variable t-test performed on each of the six configurations using the

BitTorrent Packet On the List (labeled “BT On List” in Table 5.1) packet type. The

table gives the number of trials, the mean number of CPU cycles required to process

the BitTorrent Handshake packet, the standard deviation, the standard error of the

mean, and a 95% confidence interval for the mean.

Looking at the table, the initial assumption would be that all six configura-

tions are stochastic processes. However, looking closer at the raw data, contained

in Appendix B, the packet processing time in the Packet Write configuration in fact

95

Table 6.3: Packet Processing Times for BitTorrent Packets On the List
Configuration N Mean Standard Standard Error Confidence Interval

(Events) Deviation of the Mean (95%)

Control 50 116207 22418 3170 (109836, 122578)

User Alerts 50 1702125 22880 3236 (1695623, 1708628)

Dual Buffer 50 118986 22391 3167 (112623, 125350)

Packet Write 50 23292 318 45 (23202, 23382)

Cache 50 14679 2064 292 (14093, 15266)

Combined 50 3783 75 11 (3762, 3805)

alternates between two values, which shows that this is actually a deterministic pro-

cess. Thus, when BitTorrent packets are processed and then written to a log file,

every configuration save one results in a variable packet processing time.

Figure 6.3 shows 95% confidence interval plots of the packet processing time

required for a BitTorrent Handshake packet whose file info hash is on the list of

interest. The number of cycles required ranges from 3,783 cycles to 118,986 cycles,

which equates to a range of 12.61 to 396.62 microseconds per packet.

Looking at both the table and the figure, the following qualitative observations

are noted:

• Enabling the User Alerts results in a significant increase in packet processing

time, due to the slow rate of RS232 data transmission versus CPU speed. Again,

for clarity purposes, the User Alerts configuration does not appear in the figure.

• Adding a second receive buffer adds a small amount of additional processing

time to the Control configuration baseline. This is due to the additional software

processing required process frames from two receive buffers instead of one.

• Writing the frame to on-board RAM instead of the Compact Flash card, as is

done in the Packet Write optimization, reduces the packet processing time by

approximately 80% over the Control configuration.

• A significant number of cycles are saved by enabling the instruction and data

caches.

96

Figure 6.3: Interval Plots of Packet Processing Times for BitTorrent Packets On
the List

• The packet processing time for the Combined configuration is now much less

than that of the Cache configuration. This is due to the large packet processing

time reduction of the Packet Write and Cache optimizations outweighing the

small packet processing time increase of the Dual Buffer optimization.

6.1.2 Test 2: Calculating Probability of Intercept Under a Non-Peer-to-Peer

Load. Table 6.4 shows the results of the packet intercept test under a heavy

non-peer-to-peer network load. For each configuration tested, the number of packets

captured out of the 300 sent is shown. The table also shows the probability of packet

intercept and the corresponding 95% confidence interval for each configuration. In all

tests, the total load on the network is measured by the Wireshark packet sniffer to

be between 89.6 Mbps and 89.7 Mbps, which equates to an 89.6% load on the 100

Mbps network. However, this measurement is not absolute, as the Wireshark program

itself can drop packets under a heavy load. Since it is unknown how many packets

97

were dropped by Wireshark, 89.6% is considered to be the minimum load on the test

network.

Table 6.4: Probability of Packet Intercept Under a Non-Peer-to-Peer Workload
Configuration Packets Captured Packets Sent Probability of Confidence Interval

(Events) (Trials) Packet Intercept (95%)

Control 159 300 0.5300 (0.4718, 0.5876)

User Alerts 166 300 0.5533 (0.4951, 0.6105)

Dual Buffer 292 300 0.9733 (0.9481, 0.9884)

Packet Write 174 300 0.5800 (0.5219, 0.6365)

Cache 289 300 0.9633 (0.9353, 0.9816)

Combined 300 300 1.0000 (0.9901, 1.0000)

Wireshark 298 300 0.9933 (0.9761, 0.9992)

Figure 6.4 shows the 95% confidence intervals of probability of packet intercept

for the configurations in Table 6.4. Looking at the table and the figure, while the

User Alerts and Packet Write configurations capture more packets of interest than

the Control (166 and 174 versus 159), the overlapping confidence intervals shown in

the table and figure suggest that the differences are not statistically significant. The

figure and table also show that the Cache and Dual Buffer configurations perform

significantly better than the Control. Moreover, the Combined configuration performs

better than the other five configurations (300 out of 300 packets captured), returning

a test result of 100% probability of packet intercept for packets of interest, which is

comparable to the 99% capture rate of the Wireshark packet sniffer.

To further determine the statistical significance of these results, hypothesis tests

are performed between the various optimizations versus the Control configuration. As

shown in Table 6.5, the p-value for the one-sided test involving the User Alerts and the

Control is too high (0.283) to state with confidence that the increase in probability of

packet intercept is statistically significant. In the one-sided test involving the Packet

Write optimization and the Control, again the p-value is too high (0.109) to accept

the alternative hypothesis, but it can be inferred that the optimization did provide

some improvement to the probability of packet intercept. For the Cache, Dual Buffer,

98

Figure 6.4: Interval Plots of Probability of Intercept for a BitTorrent Packet Under
a Non-Peer-to-Peer Workload

and Combined configurations, the p-value for the one-sided test is 0.000, indicating

a strong statistical certainty that these configurations are better than the Control

configuration.

Table 6.5: Hypothesis Testing on Control Configuration Under a Non-Peer-to-Peer
Workload

Alternative Hypothesis with Estimate for Z Value of P Value of

95% Confidence Interval Difference Difference Test Difference Test

p(User Alerts) > p(Control) 0.0233 0.57 0.283

p(Dual Buffer) > p(Control) 0.4433 14.64 0.000

p(Packet Write) > p(Control) 0.0500 1.23 0.109

p(Cache) > p(Control) 0.4333 14.07 0.000

p(Combined) > p(Control) 0.4700 16.31 0.000

To determine the overall performance of the Combined configuration, another

set of hypothesis tests are performed between the Combined configuration versus

the individual optimizations and Wireshark. As shown in Table 6.6, the p-value for

the one-sided tests involving the User Alerts, Packet Write, Cache, and Dual Buffer

99

optimizations ranges between 0.000 and 0.002, indicating a strong statistical certainty

that the Combined configuration is better than each individual optimization by itself.

When the Combined configuration is compared to the performance of Wireshark, the

p-value for the one-sided test is 0.078, which is too high to accept the alternative

hypothesis that the Combined configuration performs better than Wireshark, but

does indicate that the probabilities of packet intercept of the two are comparable.

Table 6.6: Hypothesis Testing on Combined Configuration Under a Non-Peer-to-
Peer Workload

Alternative Hypothesis with Estimate for Z Value of P Value of

95% Confidence Interval Difference Difference Test Difference Test

p(Combined) > p(User Alerts) 0.4467 15.56 0.000

p(Combined) > p(Dual Buffer) 0.0267 2.87 0.002

p(Combined) > p(Packet Write) 0.4200 14.74 0.000

p(Combined) > p(Cache) 0.0367 3.38 0.000

p(Combined) > p(Wireshark) 0.0067 1.42 0.078

6.1.3 Test 3: Calculating Probability of Intercept Under an All-Peer-to-Peer

Load. Table 6.7 shows the results of the packet intercept test under an all-peer-to-

peer network load. For each configuration tested, the number of BitTorrent Handshake

packets that are sent over the network in order for the system to capture 400 of them

is shown in the table. The table also shows the probability of packet intercept and

the corresponding 95% confidence interval for each configuration. In all tests, the

total load on the network is measured by the Wireshark packet sniffer to be between

23.35 and 24.10 Mbps, which equates to approximately a 23.3% load on the 100 Mbps

network. This is the maximum network throughput possible using the Hping utility

and the BitTorrent Handshake workload.

Figure 6.5 shows the 95% confidence intervals of probability of capture for the

configurations in Table 6.7. Looking at the table and the figure, the only configuration

that performs worse than the Control is the User Alerts configuration (3.4% capture

rate for Control versus 1.5% capture rate for User Alerts). The figure and table also

show that the Cache and Dual Buffer configurations perform slightly better than the

100

Table 6.7: Probability of Packet Intercept Under an All-Peer-to-Peer Workload
Configuration Packets Captured Packets Sent Probability of Confidence Interval

(Events) (Trials) Packet Intercept (95%)

Control 400 11757 0.0340 (0.0308, 0.0375)

User Alerts 400 26810 0.0149 (0.0135, 0.0164)

Dual Buffer 400 9188 0.0435 (0.0395, 0.0479)

Packet Write 400 990 0.4040 (0.3733, 0.4354)

Cache 400 3599 0.1111 (0.1011, 0.1219)

Combined 400 400 1.0000 (0.9925, 1.0000)

Wireshark 400 404 0.9901 (0.9748, 0.9973)

Figure 6.5: Interval Plots of Probability of Intercept for a BitTorrent Packet Under
an All-Peer-to-Peer Workload

Control, but still are only able to capture less than 12% of packets sent. The Packet

Write configuration performs moderately better than the Control (40.4% versus 3.4%

capture rate), but it is still unable to capture more than 1 in 2 packets. Finally, the

Combined configuration performs significantly better than the other five configura-

tions (400 out of 400 packets captured), returning a test result of 100% probability of

packet intercept and comparing very favorably with Wireshark’s result of 99.0%.

101

To further validate the statistical significance of these results, hypothesis tests

are performed between the various optimizations versus the Control configuration. As

shown in Table 6.8, the p-value for the one-sided test involving the User Alerts and

the Control is 1.000, which corresponds to the fact that the User Alerts configuration

actually performed worse than the Control. In the one-sided tests involving the other

four optimizations, the p-value for the one-sided test is 0.000, indicating a strong sta-

tistical certainty that these configurations have a better probability of packet intercept

than the Control configuration.

Table 6.8: Hypothesis Testing on Control Configuration Under an All-Peer-to-Peer
Workload

Alternative Hypothesis with Estimate for Z Value of P Value of

95% Confidence Interval Difference Difference Test Difference Test

p(User Alerts) > p(Control) (0.0191) (10.45) 1.000

p(Dual Buffer) > p(Control) 0.0095 3.51 0.000

p(Packet Write) > p(Control) 0.3700 23.59 0.000

p(Cache) > p(Control) 0.0771 14.02 0.000

p(Combined) > p(Control) 0.9660 577.76 0.000

To determine the overall performance of the Combined configuration, another

set of hypothesis tests are performed between the Combined configuration versus the

individual optimizations and Wireshark. As shown in Table 6.9, the p-value for the

one-sided tests involving the User Alerts, Dual Buffer, Packet Write, and Cache op-

timizations are all 0.000, indicating a strong statistical certainty that the Combined

configuration is better than each individual optimization by itself. When the Com-

bined configuration is compared to the performance of Wireshark, the p-value for the

one-sided test is 0.022, which is low enough to accept, with statistical confidence,

the hypothesis that probability of packet intercept for the Combined configuration is

higher than the probability of packet intercept using Wireshark.

6.1.4 Experiment 1 Analysis. Table 6.10 shows a summary of the results

from the first test, Calculating Packet Processing Time. For each workload, the mean

102

Table 6.9: Hypothesis Testing on Combined Configuration Under an All-Peer-to-
Peer Workload

Alternative Hypothesis with Estimate for Z Value of P Value of

95% Confidence Interval Difference Difference Test Difference Test

p(Combined) > p(User Alerts) 0.9851 1330.46 0.000

p(Combined) > p(Dual Buffer) 0.9565 449.29 0.000

p(Combined) > p(Packet Write) 0.5960 38.21 0.000

p(Combined) > p(Cache) 0.8889 169.66 0.000

p(Combined) > p(Wireshark) 0.0099 2.01 0.022

packet processing times and the percentage change from the Control configuration are

recorded in the table.

Table 6.10: Mean Packet Processing Time Comparisons to Control Configuration
Configuration Non-BT Percent BT Packet Percent BT Packet Percent

Packet Change Not on List Change on List Change

(Cycles) (%) (Cycles) (%) (Cycles) (%)

Control 1206 0.00 7296 0.00 116207 0.00

User Alerts 1152 4.48 1044756 (14219.60) 1702125 (1364.74)

Dual Buffer 1344 (11.44) 7770 (6.50) 118986 (2.39)

Packet Write 1146 4.98 7593 (4.07) 23292 79.96

Cache 276 77.11 1145 84.31 14679 87.37

Combined 304 74.83 1205 83.48 9125 92.15

Analyzing the table, the following observations are made about the data col-

lected in the first test:

• For the two BitTorrent packet workloads, messages to the user were sent in the

User Alert configuration, resulting in a several order of magnitude increase in

processing time. This increase is due to the fact that the user alerts are trans-

mitted via serial port at 115,200 baud, which is significantly slower than the

300 MHz processor speed and 100 MHz bus speed used by the FPGA board.

Based on this significant increase in packet processing time, and the correspond-

ing decrease in overall system performance, all user alerts are eliminated from

the final design.

103

• Adding a second receive buffer results in more CPU cycles required to process a

packet, regardless of the type of packet. This is due to the additional processing

cycles required to check both receive buffers in order to determine which one

contains the next packet to be processed. However, as shown in the second test,

this increase in CPU cycles is more than offset by the advantages gained by

implementing the second Ethernet receive buffer.

• As expected, the modification to the packet writing routine only decreases the

packet processing time when packets are actually written to the log file. For the

cases where packets are not written, no significant processing time is gained or

lost with this optimization.

• Enabling the caches results in a significant decrease in CPU cycles required to

process a packet, regardless of packet type.

Table 6.11 shows a summary the results from the second test, Calculating Prob-

ability of Intercept Under a Non-Peer-to-Peer Load. For each configuration, the mea-

sured probability of packet intercept and the percentage change from the Control

configuration are recorded in the table. Analyzing the data in this table, combined

with the data in Tables 6.4, 6.5, and 6.6, the following observations are made about

the data collected in the second test:

Table 6.11: Comparison of Probability of Packet Intercept Between Optimizations
and Control Configuration for a Non-Peer-to-Peer Workload

Configuration Probability of Packet Intercept Percent Change from Control

(%)

Control 0.5300 0.00

User Alerts 0.5533 4.40

Dual Buffer 0.9733 83.64

Packet Write 0.5800 9.43

Cache 0.9633 81.76

Combined 1.0000 88.68

Wireshark 0.9933 79.52

104

• Adding User Alerts to the system has no statistical impact on the probability of

packet intercept, positive or negative. However, given the vast increase in packet

processing time associated with messages sent to the user (5,673.8 microseconds

with the User Alerts versus 387.4 without User Alerts), their removal is still

justified in the final system design. This point is discussed further in Section 6.3.

• The alternate Packet Writing scheme does not, by itself, significantly improve

overall system performance. However, this optimization, when combined with

other improvements, does provide some benefit to the Combined configuration’s

performance.

• The optimizations that enable the caches and the second receive buffer each have

a significant positive impact on overall system performance. For each optimiza-

tion, system performance increased over 80% from the Control configuration.

• The combination of all three optimizations returned the best performance of

any configuration. Even with the additional processing required to analyze

all packets on the network for the BitTorrent protocol signature, the system

returned similar performance to the dedicated software-based packet sniffer,

Wireshark.

Table 6.12 shows a summary the results from the third test, Calculating Prob-

ability of Intercept Under an All-Peer-to-Peer Load. For each configuration, the

measured probability of packet intercept and the percentage change from the Control

configuration are recorded in the table. Analyzing the data in this table, combined

with the data in Tables 6.7, 6.8, and 6.9, the following observations are made about

the data collected in the third test:

• Adding User Alerts to the system results in a 56% decrease in performance,

as measured by probability of packet intercept. In this case, the vast increase

in packet processing time associated with messages sent to the user, discussed

above, is almost certainly the root cause of the decrease in performance.

105

Table 6.12: Comparison of Probability of Packet Intercept Between Optimizations
and Control Configuration for an All-Peer-to-Peer Workload

Configuration Probability of Packet Intercept Percent Change from Control

(%)

Control 0.0340 0.00

User Alerts 0.0149 (56.18)

Dual Buffer 0.0435 27.94

Packet Write 0.4040 1088.24

Cache 0.1111 226.76

Combined 1.0000 2841.18

Wireshark 0.9901 2812.06

• The Dual Buffer and Cache optimizations, by themselves, modestly improve

system performance, but are still unable to capture more than 50% of packets of

interest. However, combining them with the Packet Write optimization provides

a tremendous benefit to the Combined configuration’s performance.

• The alternate Packet Writing scheme by itself provides a moderate improvement

to overall system performance. The full benefit of this optimization is seen when

combined with caching and an improved Ethernet receive buffer.

• The combination of all three optimizations (Cache, Dual Buffer, and Packet

Write) have a synergistic effect on the overall performance of the system when

processing back-to-back BitTorrent packets. By themselves, each optimization

returned moderate performance gains over the Control configuration. When

combined, however, they created a system that is able to achieve a 100% proba-

bility of packet intercept, which is comparable to the dedicated software packet

sniffer, Wireshark.

Overall, the Combined configuration is clearly the best of the possible configura-

tions for the CUT. The Combined configuration consistently returned very low packet

processing times, indicating that it is able to process a variety of packets faster than

any individual optimization. The Combined configuration also returned the highest

values in both probability of packet intercept tests, indicating that it has a higher

106

probability of intercepting packets of interest in both non-peer-to-peer and all-peer-

to-peer workload environments than any of the other optimizations. Finally, using a

95% confidence interval, the Combined configuration returns a minimum capture rate

of 99.0% across all workloads, which is comparable to the performance of Wireshark,

which returned a minimum capture rate of 97.5%.

6.2 Results and Analysis of Experiment 2

6.2.1 Test 1: Calculating Packet Processing Time. Table 6.13 shows the

results of a one-variable t-test performed on the Optimized (BT + SIP) configuration

using six different packet types. The table gives the number of trials, the mean number

of CPU cycles required to process the workload packet, the standard deviation, the

standard error of the mean, and a 95% confidence interval for the mean.

Table 6.13: Packet Processing Times for SIP and BitTorrent Packets Using the
Expanded System

Configuration N Mean Standard Standard Error Confidence Interval

(Events) Deviation of the Mean (95%)

Not P2P 50 418.6 36.0 5.1 (408.4, 428.4)

BT Not on List 50 1323.5 31.8 4.5 (1314.5, 1332.5)

BT Handshake 50 3883.0 85.6 12.1 (3858.7, 3907.4)

SIP Not on List 50 19450.0 97.8 13.8 (19422.2, 19477.8)

SIP BYE 50 29951.3 224.2 31.7 (29887.6, 30015.0)

SIP INVITE 50 34778.6 226.2 32.0 (34714.3, 34842.9)

Looking at the table, the packet processing times for all six packet types are

initially assumed to be stochastic processes. However, looking closer at the raw data,

contained in Appendix B, the packet processing time for the “Non-P2P” packet type

alternates between two values, and the packet processing time for the “BT Off List”

packet type returns the same value for every packet except the first. These results

match those of the first experiment in that the packet processing times are determin-

istic for “Non-P2P” and “BT Off List” packet types in both experiments.

107

Figure 6.6: Interval Plots of Packet Processing Times for SIP and BitTorrent Pack-
ets

Figure 6.6 shows 95% confidence interval plots of the packet processing times

required for each of the six packet types. The number of cycles required ranges from

419 cycles to 34,779 cycles, which equates to a range of 1.40 to 115.93 microseconds

per packet, depending on the type of packet.

To compare the original system’s performance from the first experiment against

the system’s performance with the addition of SIP protocol processing capability, hy-

pothesis tests are performed between the Combined configuration from Experiment 1

against the modified Optimized (BT + SIP) configuration from Experiment 2. As

shown in Table 6.14, the p-value for the one-sided tests involving the packet process-

ing times for the “Non-P2P” and “BT On List” packet types is 0.000, which implies

that the addition of SIP protocol processing capability results in increased packet

processing times for both packet types over the BitTorrent-only system.

108

Table 6.14: Hypothesis Testing on Expanded System (BitTorrent+SIP) versus the
BitTorrent-Only System

Workload Alternative Hypothesis with Estimate for T Value of P Value of

95% Confidence Interval Difference Difference Test Difference Test

Non-P2P (BT + SIP) > (Combined) 115.12 18.38 0.000

BT On List (BT + SIP) > (Combined) 99.80 6.22 0.000

6.2.2 Test 2: Calculating Probability of Intercept Under a Non-Peer-to-Peer

Load. Table 6.15 shows the results of the packet intercept test under a heavy non-

peer-to-peer network load using the modified Optimized (BT + SIP) configuration.

For each of the three peer-to-peer packet types tested, the number of packets captured

by the system out of the 300 sent is shown. For comparison purposes, the number

of packets captured by the Wireshark packet sniffer for each workload is also shown.

In addition, the table shows the probability of packet intercept and the corresponding

95% confidence interval for each workload. In all tests, the total load on the network

is measured by the Wireshark packet sniffer to be between 89.6 Mbps and 89.9 Mbps,

which equates to a minimum 89.6% load on the 100 Mbps network, matching the

results from Experiment 1.

Table 6.15: Probability of Packet Intercept for BitTorrent and SIP Packets Under
a Non-Peer-to-Peer Workload

Workload Packets Captured Packets Sent Probability of Confidence

(Events) (Trials) Packet Intercept Interval (95%)

BT Handshake 300 300 1.0000 (0.9901, 1.0000)

Wireshark BT 298 300 0.9933 (0.9761, 0.9992)

SIP BYE 300 300 1.0000 (0.9901, 1.0000)

Wireshark BYE 300 300 1.0000 (0.9901, 1.0000)

SIP INVITE 298 300 0.9933 (0.9761, 0.9992)

Wireshark INVITE 300 300 1.0000 (0.9901, 1.0000)

Figure 6.7 shows the 95% confidence intervals of probability of packet intercept

for the workloads in Table 6.15. Looking at the table and the figure, the modified

Optimized (BT + SIP) configuration performed perfectly (300 out of 300 packets

captured) for two out of the three workloads, and returned a 99% probability of packet

109

Figure 6.7: Interval Plots of Probability of Intercept for BitTorrent and SIP Packets
Under a Non-Peer-to-Peer Workload

intercept for the other. This performance compares very favorably with the results

returned by the Wireshark packet sniffer, which also returned a test result of near-

100% probability of packet intercept for packets of interest.

6.2.3 Test 3: Calculating Probability of Intercept Under an All-Peer-to-Peer

Load. For each of the three all-peer-to-peer workloads (BitTorrent Handshake, SIP

INVITE, and SIP BYE), the total load on the network is measured by the Wireshark

packet sniffer, and the results shown in Table 6.16. The low maximum network load for

the BitTorrent Handshake packet workload is likely due to the fact that the BitTorrent

peer wire protocol runs on top of TCP. Both the exponential backoff mechanism and

the reliable data transfer features of TCP add additional time between packets sent

over the network, causing a decrease in the maximum throughput that the Hping

program can achieve. The SIP INVITE and BYE packets, on the other hand, use

UDP, which allows Hping to achieve a throughput of over 94 Mbps on the 100 Mbps

network.

110

Table 6.16: Observed Network Load for Various All-Peer-to-Peer Workloads
Configuration Network Load (Mbps)

BitTorrent Handshake 23.35

SIP BYE 94.61

SIP INVITE 96.28

Table 6.17 shows the results of the packet intercept test under an all-peer-to-

peer network load. For each peer-to-peer packet type tested, the number of workload

packets that were sent over the network in order for the system to capture 400 of

them is shown. For comparison purposes, the number of packets captured by the

Wireshark packet sniffer for each workload is also shown. In addition, the table shows

the probability of packet intercept and the corresponding 95% confidence interval for

each configuration.

Table 6.17: Probability of Packet Intercept for BitTorrent and SIP Packets Under
an All-Peer-to-Peer Workload

Configuration Packets Captured Packets Sent Probability of Confidence

(Events) (Trials) Packet Intercept Interval (95%)

BT Handshake 400 400 1.0000 (0.9901, 1.0000)

Wireshark BT 400 404 0.9901 (0.9748, 0.9973)

SIP BYE 400 440 0.9091 (0.8783, 0.9343)

Wireshark BYE 400 400 1.0000 (0.9901, 1.0000)

SIP INVITE 400 608 0.6579 (0.6187, 0.6956)

Wireshark INVITE 400 401 0.9975 (0.9862, 0.9999)

Figure 6.8 shows the 95% confidence intervals of probability of packet intercept

for the workloads in Table 6.17. Looking at the table and the figure, both the SUT and

Wireshark perform very well under the BitTorrent Handshake packet type, returning

a probability of packet intercept of over 99%. For the SIP BYE packet type, the SUT

returns a probability of packet intercept of just over 90%, while Wireshark returns a

perfect score of 100%. Finally, for the SIP INVITE packet type, the SUT achieves a

65.8% probability of packet intercept, while Wireshark performs much better, returning

a near-perfect score of 99.8%.

111

Figure 6.8: Interval Plots of Probability of Intercept for BitTorrent and SIP Packets
Under an All-Peer-to-Peer Workload

6.2.4 Experiment 2 Analysis. Looking at Tables 6.13 and 6.14 the following

observations are made about the data collected in the first test:

• Adding SIP processing capability to the SUT results in a higher packet processing

time for both non-peer-to-peer and BitTorrent Handshake packets. This is due

to the additional processing required by the system to determine if a packet

belongs to either the BitTorrent or SIP protocols, as opposed to looking for

only BitTorrent packets.

• The packet processing time required for any SIP packet is several times longer

than the time required to process BitTorrent packets. The reasons for this

increase in processing time are explained in Section 6.3.

Table 6.18 shows a summary the results from the second and third tests, Cal-

culating Probability of Intercept Under a Non-Peer-to-Peer Load and Under an All-

Peer-to-Peer Load. For each packet type, the measured probability of packet intercept

for the non-peer-to-peer and all-peer-to-peer workloads and the percentage difference

112

between the two are recorded in the table. Analyzing the data in this table, combined

with the data in Tables 6.15 and 6.17, the following observations are made about the

data collected in the second and third tests:

Table 6.18: Comparison of Probability of Packet Intercept Between Non-Peer-to-
Peer and All-Peer-to-Peer Workloads

Workload Probability of Probability of Improvement

Packet Intercept Packet Intercept (%)

(Non-Peer-to-Peer) (All-Peer-to-Peer)

BT Handshake 1.0000 1.0000 0.00

Wireshark BT 0.9933 0.9901 (0.32)

SIP BYE 1.0000 0.9091 (9.09)

Wireshark BYE 1.0000 1.0000 0.00

SIP INVITE 0.9933 0.6579 (33.76)

Wireshark INVITE 1.0000 0.9975 (0.25)

• The probability of packet intercept performance of the system is unchanged when

processing BitTorrent Handshake packets. Regardless of whether the SUT is

processing a single BitTorrent Handshake packet amid a high non-peer-to-peer

network load or a steady stream of Handshake packets, the system is able to

achieve a 100% probability of packet intercept. In addition, the SUT performs

slightly better than the Wireshark packet sniffer, regardless of the overall work-

load.

• When processing SIP BYE packets, the SUT sees a 9% decrease in probability

of packet intercept when processing the packets back-to-back over processing a

single packet amid a high non-peer-to-peer network load. The extended packet

processing time required for this type of packet causes the system to occasionally

drop the next frame entering the SUT because it is still processing the current

SIP frame in the Ethernet receive buffer. The Wireshark packet sniffer, however,

returns perfect scores regardless of workload type.

• When processing SIP INVITE packets, the SUT sees a 33.8% decrease in prob-

ability of packet intercept when processing the packets back-to-back over pro-

113

cessing a single packet amid a high non-peer-to-peer network load. The reason

for this is the same as that for the SIP BYE packet. However, the SIP INVITE

packet, due to its larger overall packet size, requires a longer packet processing

time than the BYE packet, resulting in a lower probability of packet intercept

than that of the SIP BYE packet. Wireshark, however, does not suffer from this

problem, returning a probability of packet intercept of at least 99.7% for both

workloads.

6.3 Overall Analysis

6.3.1 Analysis of Packet Processing Time. The first step in the research

methodology is to find a system configuration that required the minimum number of

CPU cycles to process packets entering the system. Based on the results presented

here, the most significant improvement to system speed occurs when the data and

instruction caches are enabled for the Power PC processor. By allowing the FPGA

to cache both processor instructions and heap and stack data, packet processing

time is reduced by 77% to 87%, depending on the type of packet. In addition, by

delaying the Compact Flash write operations until after the termination of system

processing, the packet processing time is reduced by 80% for packets written to the log

file. When all four optimizations are combined, the resulting Combined configuration

achieves a 75% to 92% reduction in processing time of packets of interest over the

Control configuration, depending on the type of packet. Therefore, the Combined

configuration is confirmed to be the best system configuration for minimizing the

overall packet processing time for all packets entering the system.

When the ability to process SIP packets is added to the system, the mean packet

processing time required to process non-peer-to-peer packets increases by 115 cycles

(0.38 microseconds) and the time required to process BitTorrent Handshake packets

increases by 100 cycles (0.33 microseconds). This increase in packet processing time

is due to the additional software code required to check each packet for the signature

of a SIP control packet as well as the signature of a BitTorrent Handshake packet.

114

One significant finding in this portion of the research is the vastly increased

packet processing time required for SIP packets over BitTorrent Handshake packets.

Using the Combined configuration, the mean packet processing time of SIP BYE and

INVITE packets of interest is between 99.8 and 115.9 microseconds, versus a mean

of 12.9 microseconds for a BitTorrent Handshake packet of interest. There are four

main reasons for this large disparity in packet processing times.

1. Unlike BitTorrent file info hashes, the sender and receiver SIP URIs are not

located at a fixed offset within the packet payload, requiring additional processor

time to search the SIP frame contents and find the numbers.

2. When processing SIP packets, the system has to compare both the sender SIP

URI and the receiver SIP URI against the list of interest, whereas the system

only compares a single file info hash against the list for BitTorrent packets.

3. When performing the list checks, the first 12 bytes of each SIP URI is compared

against the list, while only the first 4 bytes of the BitTorrent file info hash are

compared.

4. SIP packets are generally much larger than BitTorrent Handshake packets, and

thus the system requires more time to copy them. The BitTorrent Handshake

frames used in this research are 122 bytes long, while the SIP BYE and INVITE

frames are 547 and 963 bytes, respectively.

6.3.2 Analysis of Probability of Packet Intercept Under Load. In the first

experiment, the overall goal is to find the configuration that returns the highest proba-

bility of packet intercept for both non-peer-to-peer and all-peer-to-peer workloads. In

the non-peer-to-peer case, where a single BitTorrent packet is sent while the network

is under a heavy NETBIOS file transfer load, the Dual Buffer optimization returns

a capture rate of over 95%, while the single buffer configurations (with the excep-

tion of the Cache configuration, discussed below) all return capture rates of less than

60%. This significant packet loss rate for the single receive buffer configurations is

115

likely due to the inability of a non-peer-to-peer frame to be processed and cleared

from the buffer before the BitTorrent Handshake packet arrives at the system. At

100 Mbps, the mandatory inter-frame gap required by the Ethernet protocol results

in a 0.96 microsecond delay between the end of one frame and the beginning of the

next. Since the system processes instructions at 300 MHz, it is able to perform at

most 300 instructions per microsecond. Therefore, because multiple instructions are

required to transfer data from the Ethernet buffer, read the payload contents, and

analyze the data, the system cannot keep up with the data flow, resulting in signifi-

cant packet loss as the system approaches 100% utilization. However, note that the

Cache optimization is the exception to this observation; even with a single buffer,

enabling the caches results in a capture rate of 96%. This is likely due to the fact

that the extremely small processing times provided by the cache enable a packet to

be processed in the short interframe time gap.

Adding a second receive buffer to the Ethernet controller dramatically increases

the probability of packet intercept under a non-peer-to-peer workload, achieving a

97% capture rate even with no other optimizations incorporated. The use of two

receive buffers allows a non-peer-to-peer packet to be processed from one buffer while

the BitTorrent Handshake packet is being received in the second buffer. Specifically,

the additional buffer provides a minimum of 576 additional bit times ((7-byte pream-

ble + 1-byte delimiter + 64-byte minimum frame size) x 8 bits per byte) for the

processing of the non-peer-to-peer frame over the single buffer option [IEE05]. Al-

though this improvement comes at the cost of additional processing cycles, as shown in

Table 6.10, the expanded processing window provided by the second buffer more than

offsets the cost in individual packet processing times. When combined with caching

and the improved packet writing scheme, the infrequency of packets of interest, and

the small likelihood of traffic saturation on the network link, the final Combined con-

figuration allows the system to successfully capture and process all BitTorrent packets

of interest sent into a network with a high non-peer-to-peer traffic load.

116

For the situation where BitTorrent Handshake packets are sent to the system

back-to-back, as in the case of the all-peer-to-peer workload, each system optimization

returns a much different probability of packet intercept. Using this workload, only the

Packet Write optimization results in a greater than 40% probability of packet intercept ;

the other three optimizations all return capture rates of less than 15%. These low

capture rates are due to the increased packet processing time required for BitTorrent

packets over non-peer-to-peer packets. When all four optimizations are used together,

the resulting Combined configuration is able to achieve a 100% probability of packet

intercept for BitTorrent Handshake packets that are received back-to-back by the

SUT, which is comparable to the results for the dedicated Wireshark packet sniffer.

One interesting result from this portion of the testing is the fact that the Packet

Write optimization returns a probability of packet intercept that is four times higher

than that of the Cache configuration, yet the packet processing time of the Packet

Write configuration is over double that of the Cache configuration. To resolve this

discrepancy, further testing of the Cache configuration is conducted, and the discovery

made that once several hundred packets from the all-peer-to-peer workload are written

to the Compact Flash card, approximately one in four packets thereafter suffers from

a packet processing time of over 125,000 cycles, which is 10 times greater than the

average packet processing time found in the first experiment. Two possible sources for

this increase are the hardware controller that governs Compact Flash write operations

and the cache system itself. Regardless of the cause, the occasional increase in packet

processing time for the Cache configuration results in a lower overall probability of

packet intercept than the Packet Write configuration, which does not access the cache

or the Compact Flash card while the system is actively processing packets.

When the ability to process SIP packets is added to the system, the overall sys-

tem performance is unchanged when processing single packets of interest under a high

non-peer-to-peer network load. Regardless of peer-to-peer packet type (BitTorrent

Handshake, SIP INVITE, or SIP BYE), the system returns at least a 97.5% proba-

117

bility of packet intercept. This performance is comparable to that of the Wireshark

packet sniffer, which also returned a minimum 97.5% probability of packet intercept.

However, when the system is tasked with processing back-to-back peer-to-peer

packets arriving at near-line speed, the system’s performance depends greatly on

the type of peer-to-peer packets arriving at the SUT. For the BitTorrent Handshake

packet workload, the system still returns a probability of packet intercept of 100%,

which is unchanged from the non-SIP processing system. When processing back-to-

back SIP BYE packets, the probability of packet intercept drops to 90.9%, and when

processing back-to-back SIP INVITE packets, the probability of packet intercept drops

further to 65.8%. These results are expected, since the packet processing time of a

SIP BYE packet is much greater than that of a BitTorrent Handshake packet, and

the packet processing time of a SIP INVITE packet is greater than that of a SIP

BYE packet. Thus, for the case where the system receives back-to-back packets of

interest, the probability of successfully intercepting both packets is at least 90% for

BitTorrent Handshake and SIP BYE packets, and is less than two-in-three for SIP

INVITE packets. In comparison, the Wireshark packet sniffer achieved a probability

of packet intercept of greater than 99% for all three packet types, which is likely due

to the fact that Wireshark does not perform any extraction or comparison of payload

data in the frames it collects.

6.4 Summary

This chapter presents and analyzes the data collected from each of the three

tests that were used in the two experiments. A statistical analysis of the performance

metrics for each test in each experiment is performed. Then, an overall analysis and

discussion of the results from the experiments is provided. The results show that

the Combined configuration processes packets of interest 92% faster than the Control

configuration, and the probability of intercept for BitTorrent Handshake messages

is 99.0%, and the probability of intercept for SIP control packets is 97.6%, under a

network traffic load of at least 89.6 Mbps.

118

VII. Conclusions

This chapter presents the overall conclusions drawn from the research. Section 7.1

compares each research goal with the experimental results and determines if

the research objectives have been met. The significance of the research is discussed in

Section 7.2. Finally, Section 7.3 provides several recommendations for possible areas

of expansion for this research.

7.1 Conclusions of Research

7.1.1 Goal #1: Construct the TRAPP System. The first goal of this research

is to construct an FPGA-based system that analyzes traffic on a network, detects a

selected peer-to-peer protocol, compares the digital information being shared against

a list of interest, and in the case of a match, records selected control frames from

the peer-to-peer session in a log file. To accomplish this goal, a Virtex II Pro FPGA

system is first modified to accept all network traffic entering its Ethernet controller.

The Power PC processor on the board is then programmed with the peer-to-peer

detection software, the BitTorrent file info hash-matching algorithm, and the log file

writing routine. Finally, a sample list of interest is created and loaded into the board’s

memory. The entire system is tested against a real-world BitTorrent file transfer, and

the successful packet intercept by the system accomplishes the first research goal.

7.1.2 Goal #2: Optimize the System. The second goal of this research is to

optimize the system such that it will be able to detect and record all packets of interest

on the network, even under a heavy network traffic load. Of the five modifications

made to the original system design, the User Alerts modification returns the worst

packet processing times, increasing the system’s processing times between 1,364%

and 14,219% when processing BitTorrent packets. The Combined configuration that

incorporates three different modifications returns the best packet processing times,

decreasing the system’s processing times between 75% and 92%, depending on the

type of packet being processed.

119

The five modifications made to the original system design return varying changes

to the probability of packet intercept for packets of interest under a 89.6 Mbps network

load, ranging from an increase of 4.4% for the User Alerts to an increase of 89% for

the Combined configuration over the original system design, further justifying the

Combined configuration’s use for the final optimized design. Using the Combined

configuration, the optimized system is able to capture a packet of interest with a

probability of packet intercept of at least 99.0%, using a 95% confidence interval and

given an 89.6 Mbps network utilization. This exceeds the hypothesized value of a

95% probability of intercept, proving the hypothesis and meeting the second research

goal.

7.1.3 Goal #3: Expand the System. The final goal of this research is to

modify the system to accept an additional peer-to-peer protocol with no impact on

overall performance. Software enabling the system to process SIP control packets is

added, and the entire system is again tested against actual BitTorrent file transfers and

actual VoIP phone calls, verifying its capability to intercept real-world data transfers.

When the system is modified to accept SIP control packets in addition to BitTorrent

Handshake packets, it suffers a minor increase in packet processing time for both non-

peer-to-peer and BitTorrent Handshake packets. In addition, the variable placement

of SIP URIs within SIP control packets leads to an order of magnitude increase in

their packet processing times over those of BitTorrent Handshake packets.

With one exception, across all types of peer-to-peer packets tested, the updated

system is able to capture a packet of interest with a probability of packet intercept

of at least 97.6%, using a 95% confidence interval and given an 89.6 Mbps network

load. However, in the rare case where the updated system is processing packets at a

rate of over 94 Mbps, and it receives two SIP control packets in a row, the probability

of packet intercept decreases to 91% for the second BYE packet and 66% for the

second INVITE packet. With the exception of this rare case, these results exceed

120

the hypothesized value of a 95% probability of intercept, conditionally proving the

hypothesis and meeting the final research goal.

7.2 Significance of Research

This research provides the Air Force and other government agencies with a

unique method of detecting and tracking both illicit file sharing and VoIP phone call

patterns. This system differs from other methods of tracking illicit file sharing in that

it is completely passive, meaning the system transmits absolutely no information into

the network being monitored, making it completely invisible to users of the network.

By designing the system to be completely self-contained on a Virtex II Pro FPGA, the

TRAPP system can be easily and inexpensively implemented on any LAN, provided

the system has access to a spanning port on the LAN gateway. The simplicity of

the system and its FPGA-based implementation enable it to run at very high speeds,

ensuring a high probability that a packet of interest is successfully intercepted, even

when monitoring a heavily utilized network. Because the tool operates on a spanning

port of the network gateway, any failure of the TRAPP system will have no negative

impact on the network’s performance. Finally, the system can be easily expanded

to include additional peer-to-peer protocols with minimum impact on overall system

performance.

When fully implemented, the TRAPP system will be an effective weapon in the

fight against child pornography. By focusing on those peer-to-peer file transfers that

involve the sharing of child pornography, the TRAPP system will give investigators

the ability to detect when an illicit file is traversing a network of interest, and allow

them to determine from where in the network the transfer is taking place. The system

will also provide them with proof, in the form of a BitTorrent data transfer request

packet, that the illicit activity is taking place, when it happened, and the address of

the computer used for the transfer.

The TRAPP system also has the unique ability to assist in the identification

and tracking of terrorist cells similar to those involved in the 2008 Mumbai attacks.

121

By tracking VoIP phone conversations based on a list of interest containing SIP URIs

of known terrorists or terror supporters, TRAPP can determine the SIP URIs with

which they are communicating. With these new URIs in hand, authorities can then

attempt to track the source of the SIP client and its registrar server, and determine

the physical location of the terrorists. In addition, the SIP conversations collected can

be aggregated to provide the investigator with a social network of the organization,

and may also provide data on the its command and control structure.

7.3 Recommendations for Future Research

The next logical step for this research is to determine how the system performs

on a more robust network. Specifically, the TRAPP system should next be tested on

a gigabit Ethernet network using a more advanced FPGA board that contains both a

faster processor and a gigabit Ethernet controller. The Virtex 5-series FPGA board

features a higher processor clock speed of 550 MHz versus 300 MHz for the Virtex II,

and contains a gigabit Ethernet controller, making it an excellent choice for the next

iteration of the TRAPP system [Xil08a].

Another area for future research is addressing the encryption and obfuscation

capabilities of peer-to-peer networks. The next version of TRAPP should be able to

detect peer-to-peer control packets that have been obfuscated or encrypted, and the

relevant data extracted. However, the entire digital information transfer need not

be decrypted; simply knowing what digital information is being transferred or what

SIP URIs are being used, which are contained in the protocol’s control packets, is

sufficient for the stated purpose of the TRAPP system.

This research used a relatively small list of interest size of 1000 entries. Future

research should investigate how much larger data sets affect the overall performance

of the TRAPP system. However, the data sets will continue to be limited by the size

of the FPGA’s onboard memory, which necessitated the list size used in the Virtex

II-based system.

122

Finally, the system should be considered for use as a tool for countering the

worldwide proliferation of botnets [Ber06]. The TRAPP system could prove to be

an effective detection and tracking system for botnet control messages entering and

leaving a target network, and this should be investigated as a future capability.

123

Appendix A. Constructing the System Hardware

This Appendix presents a step-by-step guide to constructing the hardware por-

tion of the FPGA-based forensic tool used in this research. Section A.1 gives

an overview of the hardware components used in the construction of the system.

Section A.2 provides a step-by-step guide to creating the system using the Xilinx

Platform Studio software suite. Section A.3 shows how the Ethernet controller is

modified to enable promiscuous mode. Finally, Section A.4 shows how to create the

Wireshark-compatible system clock that is used to timestamp frames that are copied

to the log file.

A.1 Hardware Description

This section describes the major hardware components used by the TRAPP

system. The tool is based on the Xilinx II-Pro Development Board, and all compo-

nent programming and integration is accomplished using the Xilinx Platform Studio

software suite. As shown in Figure A.1, a Power PC core contained on the FPGA

executes the code stored in Block RAM modules, and implements those commands

on other hardware modules that are connected via the Processor Local Bus (PLB).

These components and their functions are detailed below.

A.1.0.1 Microprocessor. The on-chip Power PC 405 processor is used

in this system. The design uses the inherent functionality of the Power PC processor

to access on board Block RAM, implement control bus functions, and provide the

capability for executing software applications.

A.1.1 Block RAM. For this implementation, three 64-kilobyte Block RAM

(BRAM) modules are used. The first block is dedicated exclusively to boot up software

code, data and instruction memory, and the stack and heap. The second block is

dedicated to storage of the lists of interest that are read in from the Compact Flash

card. The third block is dedicated to intermediate storage of captured frames prior

to their transfer to the log file on the Compact Flash card.

124

Figure A.1: Hardware Design Block Diagram

A.1.2 XPS EthernetLite Controller. The Intellectual Property (IP) to con-

trol the functions of the board’s Ethernet connection is provided by Xilinx and is used

as the basis for the system’s network interface. The VHDL code for this interface is

modified to allow packet capture for all packets (promiscuous mode), as the Ether-

netLite as designed only supports unicast and broadcast traffic. For details on how

this Xilinx IP was modified, see Section A.3.

A.1.3 System ACE Controller. The Xilinx-provided IP for the System ACE

controller is used to manage and access the Compact Flash removable storage media

for storage and retrieval of data. This element is used both to read the lists of interest

into the system and to write the packet capture log file.

A.1.4 RS232 UART / General Purpose IO Interfaces. Two interfaces are

used to control the functioning of the system and for debugging purposes. Specifically,

the terminal interface is used to alert the user when a packet of interest is detected

by the system, and to display system messages concerning the transfer of data to and

125

from the Compact Flash card. The push buttons are used to tell the device to stop

execution and to write the log file from the BRAM to the Compact Flash card.

A.1.5 Custom Hardware Clock. This hardware provides the system with

a clock that is used to time stamp packets of interest when they are written to the

log file. This hardware implementation was added due to the excessive amount of

software processing required to generate a Wireshark-compatible time stamp using

the PowerPC System Timer.

A.2 Configuring Components on the Virtex FPGA Board

This section provides a step-by-step description of how to create the hardware

configuration described above. For this research, Xilinx Platform Studio, release

version 10.1.01 is used.

1. To begin, create a new project by selecting “New Project” from the “File” menu.

In the resulting pop-up window, shown in Figure A.2, select the “Base System

Builder wizard” option and click “OK” to continue.

Figure A.2: The Project Creation Options Window

126

2. In the next pop-up window, shown in Figure A.3, name the project file. In the

Advanced Options, check the “Set Project Peripheral Repositories” box, and

type the path to the Virtex II Pro library directory contained on the Drivers

CD included with the Virtex II Pro board. Then click “OK” to continue.

Figure A.3: The Project Creation and Repository Selection Window

3. In the Base System Builder - Welcome window, select “I would like to create a

new design” and click “Next” to continue.

127

4. In the Select Board window, shown in Figure A.4, select “Xilinx” in the Board

vendor drop-down menu and “XUP Virtex-II Pro Development System” in the

Board name drop-down menu. Ensure that revision C is shown in the Board

revision drop-down menu, and click “Next” to continue.

Figure A.4: The Select Board Window

5. In the Base System Builder - Select Processor window, select the “Power PC”

radio button, then click “Next” to continue.

128

6. In the Configure PowerPC Processor window, shown in Figure A.5, select “300.00”

MHz for the Processor clock frequency and “100.00” MHz for the Bus clock fre-

quency. Ensure that the “FPGA JTAG” radio button is selected in the Debug

I/F section, and that no On-chip memory is selected. Then click “Next” to

continue.

Figure A.5: The Configure PowerPC Processor Window

129

7. In the Configure IO Interfaces (1 of 2) window, shown in Figure A.6, select the

boxes for RS232 Uart 1, Ethernet MAC, and SysACE CompactFlash. In the

RS232 section, select “115200” as the Baudrate. Then click “Next” to continue.

Figure A.6: The Configure IO Interfaces (1 of 2) Window

130

8. In the Configure IO Interfaces (2 of 2) window, shown in Figure A.7, select the

box for PushButtons 5Bit. Then click “Next” to continue.

Figure A.7: The Configure IO Interfaces (2 of 2) Window

131

9. In the Add Internal Peripherals window, shown in Figure A.8, create three

BRAM components by clicking the “Add Peripheral” button and selecting XPS

BRAM IF CNTLR. For each BRAM, ensure the Memory size is set to 64 Kb.

Figure A.8: The Add Internal Peripherals Window

132

10. In the Software Setup window, shown in Figure A.9, deselect the Memory test

and Peripheral selftest sample application selections, then click “Next” to con-

tinue.

Figure A.9: The Software Setup Window

11. In the System Created window, verify that the appropriate hardware has been

added, then click “Generate” to complete the hardware construction.

A.3 Modifying the Ethernet Controller

The first piece of custom IP created for the hardware system is the modification

of the Xilinx-provided Ethernet interface to allow it to capture all frames transmitted

across the network. Currently, the XPS EthernetLite drivers only support unicast and

133

broadcast frame reception “out of the box.” To force the Ethernet controller to oper-

ate in promiscuous mode, the VHDL code in the EthernetLite’s rx_state_2.vhd

file is modified. The file is found in the

C:\Xilinx\10.1\EDK\hw\XilinxProcessorIPLib\pcores\

xps_ethernetlite_v2_00_a\hdl\vhdl directory. The modifications to the file’s code

are shown in the code segment below:

1 -- Keep these two lines from the original code:

2 bcastAddrGood <= ’1’ when checkingBroadcastAdr_i = ’1’ and

3 Emac_rx_rd_data_d1(0 to 3) = x"F" else ’0’; -- 03-26-04

4

5 -- Add the following line to force the controller to think that all

6 -- non-broadcast frames are unicast:

7 ucastAddrGood <= ’1’ when checkingBroadcastAdr_i = ’0’ else ’0’;

8

9 -- Remove these next two statements...they are no longer needed:

10 -- ucastAddrGood <= ’1’ when checkingBroadcastAdr_i = ’0’ and

11 -- (Emac_rx_rd_data_d1(0 to 3) = Mac_addr_ram_data) else ’0’;--03-26-04

In this modification, line 7 is added to set the “Unicast Address Good” variable

to ’1’ regardless of the actual destination MAC address. The ’1’ value indicates that

that the frame is addressed to this Ethernet controller. Lines 10 and 11, which contain

the original unicast address comparison logic, are then removed.

Though this modification is deceptively simple, a total deconstruction of the

EthernetLite interface driver and receive state machine was required to determine

where the modifications should be made. By telling the receive hardware that every

packet received is a confirmed unicast frame, the Ethernet controller captures every

frame regardless of intended recipient, and passes them up to the software driver.

134

A.4 Creating the System Clock

The second piece of custom hardware is the development of a custom hardware

system clock using VHDL. The clock has two main functions, keeping accurate time

in a Wireshark-readable format and updating its clock value when directed by the

system software. The core VHDL implementation of the timer is shown in the code

segment below:

SLAVE_REG_WRITE_PROC : process(Bus2IP_Clk) is

variable counter_usec : STD_LOGIC_VECTOR (0 to 31) := x"00000000";

variable counter_sec : STD_LOGIC_VECTOR (0 to 31);

variable count_100 : integer := 0;

begin

if Bus2IP_Clk’event and Bus2IP_Clk = ’1’ then

if Bus2IP_Reset = ’1’ then

slv_reg0 <= (others => ’0’);

slv_reg1 <= (others => ’0’);

slv_reg2 <= (others => ’0’);

else

case slv_reg_write_sel is

-- If a time index is written to one of the registers from the

-- software, update the clock secs counter with the new value

when "100" =>

-- Read in the time index register to the secs counter

for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop

if (Bus2IP_BE(byte_index) = ’1’) then

counter_sec(byte_index*8 to byte_index*8+7) :=

Bus2IP_Data(byte_index*8 to byte_index*8+7);

end if;

end loop;

-- If the clock register has not been written to by the

-- software, do the following...

135

when others =>

-- If 100 clock cycles have passed, increment usec counter

if (count_100 = 100) then

counter_usec := counter_usec + ’1’;

-- Reset the clock tick counter

count_100 := 0;

-- If a million usecs have passed, increment sec counter

if (counter_usec = 1000000) then

counter_sec := counter_sec + ’1’;

-- Reset the usec counter

counter_usec := x"00000000";

-- Copy the new secs value to the software register

slv_reg0 <= counter_sec;

end if;

-- Copy the new usecs value to the software register

slv_reg1 <= counter_usec;

end if;

-- Increment the clock tick counter

count_100 := count_100 + 1;

end case;

end if;

end if;

end process SLAVE_REG_WRITE_PROC;

To provide the system with a Wireshark-readable time output, the timer con-

tinuously updates two software-accessible 32-bit registers. One register (slv_reg0)

returns an unsigned integer representing the number of seconds since system ini-

tialization or since the last time update. The other register (slv_reg1) returns an

unsigned integer representing the number of microseconds since the timer’s seconds

register was incremented. Note that the timer utilizes the PLB clock, which for this

implementation runs at 100 MHz. Thus, the microsecond counter (counter_usec)

136

is incremented by one for every 100 ticks of the bus clock. In addition, the seconds

counter (counter_sec) is incremented by one for every one million ticks of the mi-

croseconds counter. This format matches the Wireshark-standard 64-bit format of a

32-bit unsigned integer for seconds and a 32-bit unsigned integer for microseconds.

To update the system clock with an updated time, the system searches for any

Network Time Protocol (NTP) packets being transmitted on the network. When the

system finds an NTP packet, it extracts the 32-bit seconds portion of the time stamp

and converts it to the Wireshark time format. The software then writes the updated

32-bit seconds value to a designated variable, and sends the 32 bits from the variable

via the PLB to the (counter_sec) register.

137

Appendix B. Experimental Data

This Appendix presents the experimental results from the packet processing time

tests conducted for the two experiments. Section B.1 contains the data tables

for tests conducted in the first Experiment. Section B.2 contains the data table for

the test conducted in the second Experiment.

138

B.1 Results of Testing for the BitTorrent Protocol

B.1.1 Non-BitTorrent Packets. Table B.1 below contains the number of

cycles required to process a non-BitTorrent packet for each of the six configurations

described in the Methodology. For each configuration, 50 packets are sent to the

apparatus and the number of CPU cycles required to process the packet are recorded

in the table.

Table B.1: Processor Cycles Used to Process a Non-BitTorrent Packet
Control User Alerts Packet Write Dual Buffer Cache Optimized

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

1206 1152 1146 1236 276 278

1206 1152 1146 1452 276 329

139

B.1.2 Packets with File Info Hash Not On the List. Table B.2 below contains

the number of cycles required to process a BitTorrent Handshake packet whose file

info hash is not on the list of interest, for each of the six configurations described in

the Methodology. For each configuration, 50 packets are sent to the apparatus and

the number of CPU cycles required to process the packet are recorded in the table.

Table B.2: Processor Cycles Used to Process a Packet with a Hash Not On the List
Control User Alerts Packet Write Dual Buffer Cache Optimized

7296 1045329 7593 7770 1145 1205

7296 1043829 7593 7770 1145 1205

7296 1045329 7593 7770 1145 1205

7296 1043829 7593 7770 1145 1205

7296 1045629 7593 7770 1145 1205

7296 1045479 7593 7770 1145 1205

7296 1044429 7593 7770 1145 1205

7296 1043829 7593 7770 1145 1205

7296 1044429 7593 7770 1145 1205

7296 1043679 7593 7770 1145 1205

7296 1045179 7593 7770 1145 1205

7296 1044879 7593 7770 1145 1205

7296 1044129 7593 7770 1145 1205

7296 1045779 7593 7770 1145 1205

7296 1044129 7593 7770 1145 1205

7296 1043529 7593 7770 1145 1205

7296 1045179 7593 7770 1145 1205

7296 1046079 7593 7770 1145 1205

7296 1043829 7593 7770 1145 1205

7296 1044279 7593 7770 1145 1205

7296 1045629 7593 7770 1145 1205

7296 1043979 7593 7770 1145 1205

7296 1044129 7593 7770 1145 1205

7296 1045329 7593 7770 1145 1205

7296 1044429 7593 7770 1145 1205

7296 1044729 7593 7770 1145 1205

7296 1045179 7593 7770 1145 1205

7296 1045779 7593 7770 1145 1205

7296 1045179 7593 7770 1145 1205

7296 1045929 7593 7770 1145 1205

7296 1045329 7593 7770 1145 1205

7296 1043979 7593 7770 1145 1205

7296 1045479 7593 7770 1145 1205

7296 1043979 7593 7770 1145 1205

7296 1045029 7593 7770 1145 1205

7296 1043979 7593 7770 1145 1205

7296 1043529 7593 7770 1145 1205

7296 1044429 7593 7770 1145 1205

7296 1045479 7593 7770 1145 1205

7296 1044579 7593 7770 1145 1205

7296 1045929 7593 7770 1145 1205

7296 1045029 7593 7770 1145 1205

7296 1044579 7593 7770 1145 1205

7296 1044429 7593 7770 1145 1205

7296 1044429 7593 7770 1145 1205

7296 1045629 7593 7770 1145 1205

7296 1044429 7593 7770 1145 1205

7296 1043979 7593 7770 1145 1205

7296 1045029 7593 7770 1145 1205

7296 1045479 7593 7770 1145 1205

140

B.1.3 Packets with File Info Hash On the List. Table B.3 below contains

the number of cycles required to process a BitTorrent Handshake packet whose file

info hash is on the list of interest, for each of the six configurations described in the

Methodology. For each configuration, 50 packets are sent to the apparatus and the

number of CPU cycles required to process the packet are recorded in the table.

Table B.3: Processor Cycles Used to Process a Packet with a Hash On the List
Control User Alerts Packet Write Dual Buffer Cache Optimized

104016 1688943 22977 106233 14356 4184

111327 1696977 23607 114813 14216 3773

104016 1690443 22977 106233 13574 3770

124185 1710855 23607 127362 15563 3842

104322 1690026 22977 106539 13613 3770

111633 1697910 23607 115119 14255 3773

104322 1690626 22977 106539 13613 3839

124491 1710588 23607 127668 15527 3773

104628 1689759 22977 106845 13613 3770

111939 1697493 23607 115425 14255 3845

117678 1704441 22977 119628 14819 3740

112245 1697976 23607 115731 14294 3773

104934 1689792 22977 107151 13652 3845

112245 1697976 23607 115731 14294 3773

198645 1787217 22977 200574 22697 3740

112551 1697859 23607 116037 14333 3818

105240 1692075 22977 107457 13691 3740

112551 1698309 23607 116037 14333 3773

118215 1703229 22977 120093 14900 3740

112857 1698192 23607 116343 14372 3812

105546 1691208 22977 107763 13730 3740

112857 1699992 23607 116343 14372 3743

119079 1704264 22977 121086 14978 3809

113163 1700175 23607 116649 14411 3743

105852 1690791 22977 108069 13769 3770

126021 1711203 23607 129198 15599 3812

106158 1691424 22977 108375 13808 3740

113469 1700058 23607 116955 14450 3743

106158 1691874 22977 108375 13808 3815

207222 1794222 23607 210483 22865 3773

106464 1693407 22977 108681 13847 3650

113775 1699791 23607 117261 14489 3848

106464 1693707 22977 108681 13847 3770

126633 1713519 23607 129810 15677 3773

106770 1691640 22977 108987 13886 3770

114081 1699524 23607 117567 14528 3842

120027 1705767 22977 122025 15104 3770

108267 1693011 23607 111753 13787 3773

100956 1686477 22977 103173 13145 3839

108267 1694361 23607 111753 13787 3773

113940 1700628 22977 115821 14348 3770

108573 1694280 23607 112059 13826 3845

101262 1685496 22977 103479 13184 3770

108573 1694430 23607 112059 13826 3773

195387 1782432 22977 197349 21635 3845

108879 1694313 23607 112365 13865 3773

101568 1686129 22977 103785 13223 3770

108879 1694463 23607 112365 13865 3725

114825 1701150 22977 116826 14441 3650

109185 1695846 23607 112671 13904 3653

141

B.2 Results of Testing Incorporating BitTorrent and SIP

Table B.4 below contains the number of cycles required to process various Peer-

to-Peer packets using the final apparatus configuration outlined in Appendix A. A

total of 50 packets of each type are sent to the apparatus and the number of CPU

cycles required to process the packet are recorded in the table.

Table B.4: Processor Cycles Used to Process BitTorrent and SIP Packets
Not P2P SIP Not On List SIP INVITE SIP BYE BT Not On List BT Handshake

595 20108 35534 31031 1544 4331

440 19472 34052 29564 1319 3887

389 19421 34862 29513 1319 3884

440 19421 34490 29834 1319 3956

389 19421 34406 30053 1319 3764

440 19421 33929 29804 1319 3767

389 19421 34229 29933 1319 3803

440 19421 34859 29894 1319 3767

389 19421 34787 29573 1319 3764

440 19472 34859 29423 1319 3806

389 19421 34799 29462 1319 3764

440 19472 34790 29663 1319 3767

389 19472 34745 30002 1319 3866

440 19421 34859 29933 1319 3887

389 19421 34790 30002 1319 3884

440 19421 34862 29933 1319 3962

389 19472 34805 30002 1319 3884

440 19421 34790 29933 1319 3887

389 19421 34862 30002 1319 3884

440 19421 34859 29873 1319 3956

389 19472 34736 30002 1319 3884

440 19421 34862 29873 1319 3857

389 19421 34859 30053 1319 3923

440 19421 34790 29933 1319 3857

389 19472 34808 30002 1319 3884

440 19421 34859 29933 1319 3959

389 19421 34790 30053 1319 3884

440 19421 34862 29984 1319 3857

389 19421 34808 30053 1319 3959

440 19472 34790 29984 1319 3887

389 19472 34862 30053 1319 3953

440 19472 34862 29984 1319 3929

389 19421 34736 30053 1319 3884

440 19472 34862 29984 1319 3857

389 19472 34862 30053 1319 3854

440 19472 34790 29984 1319 3926

389 19421 34805 30053 1319 3854

440 19472 34862 29984 1319 3857

389 19421 34790 30053 1319 3923

440 19421 34859 29984 1319 3887

389 19472 34787 30053 1319 3854

440 19421 34859 29984 1319 3929

389 19421 34859 30002 1319 3854

440 19421 34790 29984 1319 3857

389 19421 34856 30053 1319 3929

440 19421 34859 29984 1319 3887

389 19421 34790 30002 1319 3794

440 19421 34862 29984 1319 3932

389 19421 34856 30053 1319 3884

440 19421 34790 29984 1319 3887

142

Bibliography

AJ07. Frank Adelstein and Robert A. Joyce. File Marshal: Automatic
Extraction of Peer-to-Peer Data. Digital Investigation, 4(Supplement
1):43–48, September 2007.

Bas08. Brian Baskin. BitTorrent: The Swarm of Internet Crime, May 2008.
PowerPoint presentation available from author and Department of
Defense Cyber Crime Center.

Ber06. Scott Berinato. Attack of the Bots. Wired Magazine, Issue 14.11,
November 2006.

Bit08. BitTorrent Protocol Specification v1.0, May 2008.
http://wiki.theory.org/BitTorrentSpecification.

BSCF07. Remi Badonnel, Radu State, Isabelle Chrisment, and Olivier Festor. A
Management Platform for Tracking Cyber Predators In Peer-to-Peer
Networks. Proceedings of the Second International Conference on
Internet Monitoring and Protection, page 11, 2007.

CCM+07. K. P. Chow, K. Y. Cheng, L. Y. Man, Pierre K. Y. Lai, Lucas C. K. Hui,
C. F. Chong, K. H. Pun, W. W. Tsang, H. W. Chan, and S. M. Yiu.
BTM - An Automated Rule-Based BT Monitoring System for Piracy
Detection. Proceedings of the Second International Conference on
Internet Monitoring and Protection, page 2, 2007.

CGD07. W. Q. Cheng, J. Gong, and W. Ding. Identifying BT-like P2P Traffic by
the Discreteness of Remote Hosts. Proceedings of the 32nd IEEE
Conference on Local Computer Networks, pages 237–238, 2007.

Cis02. Cisco. Cisco Introduces New SIP-enabled Voice over IP Solutions, March
2002. http://newsroom.cisco.com/dlls/prod 031102.html.

Coh03. Bram Cohen. Incentives Build Robustness in BitTorrent, May 2003.
http://www.bittorrent.org/bittorrentecon.pdf.

Coh08. Bram Cohen. The BitTorrent Protocol Specification, February 2008.
http://www.bittorrent.org/beps/bep 0003.html.

Cor05. CounterPath Corporation. Xten Softphone SDK Delivers PC-to-PC VoIP
in New Yahoo! Messenger, June 2005.
http://www.counterpath.com/xten-softphone-sdk-delivers-pc-to-pc-voip-
in-new-yahoo-messenger.html.

Cor08. CounterPath Corporation. X-Lite VoIP Softphone, September 2008.
http://www.counterpath.com/x-lite.html&active=4.

143

Dir07. Torrent Directory. Terminology of BitTorrent, July 2007.
http://www.torrentdirectory.org/articles/article-2.html.

DS08a. Bill Dedman and Bob Sullivan. GFR/CopyRouter Process Flow, October
2008. http://msnbcmedia.msn.com/i/msnbc/Sections/NEWS/PDFs/
081016 copyrouter.pdf.

DS08b. Bill Dedman and Bob Sullivan. ISPs are Pressed to Become Child Porn
Cops, October 2008. http://www.msnbc.msn.com/id/27198621.

DVR07. Hamza Dahmouni, Sandrine Vaton, and David Rosse. A Markovian
Signature-Based Approach to IP Traffic Classification. Proceedings of the
3rd Annual ACM Workshop on Mining Network Data, pages 29–34, June
2007.

EAM06. Jeffrey Erman, Martin Arlitt, and Anirban Mahanti. Traffic Classification
Using Clustering Algorithms. Proceedings of the 2006 SIGCOMM
Workshop on Mining Network Data, pages 281–286, September 2006.

Fel04. Geoff Fellows. Peer-to-peer Networking Issues-An Overview. Digital
Investigation,, pages 3–6, February 2004.

FIP93. FIPS 180-1 - Secure Hash Standard, May 1993.
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

Gil08. Paul Gil. “Peer Guardian” Firewall: Keep Your P2P Private, January
2008.
http://netforbeginners.about.com/od/peersharing/a/peerguardian.htm.

Gon05. Yiming Gong. Identifying P2P Users Using Traffic Analysis, July 2005.
http://www.securityfocus.com/infocus/1843.

Goo08. Google. Google Talk for Developers, October 2008.
http://code.google.com/apis/talk/open communications.html.

GPW06. Matthew Gebski, Alex Penev, and Raymond Wong. Protocol
Identification of Encrypted Network Traffic. Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence, pages
957–960, December 2006.

Hpi08. Hping. Hping - Active Network Security Tool, July 2008.
http://www.hping.org/.

IEE05. IEEE. IEEE Standard 802.3, December 2005. http://standards.ieee.org.

Kah08. Jeremy Kahn. Mumbai Terrorists Relied on New Technology for Attacks,
December 2008.
http://www.nytimes.com/2008/12/09/world/asia/09mumbai.html? r=1.

KBFC04. Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and KC Claffy.
Transport Layer Identification of P2P Traffic. Proceedings of the 4th ACM
SIGCOMM Conference on Internet Measurement, pages 121–134, 2004.

144

KPF05. Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos.
BLINC: Multilevel Traffic Classification in the Dark. Proceedings of the
2005 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, pages 229–240, October 2005.

Les08a. Lawrence Lessig. Free Culture, June 2008.
http://beta.legaltorrents.com/torrents/20-lawrence-lessig—free-culture.

Les08b. Lawrence Lessig. Free Culture (Audio Book), June 2008.
http://beta.legaltorrents.com/torrents/19-lawrence-lessig—free-culture.

Mac06. Richard MacManus. The Underground World of Private P2P Networks,
August 2006. http://www.readwriteweb.com/archives/private p2p.php.

MRR08. Florian Mendel, Christian Rechberger, and Vincent Rijmen. Secure
Enough? Re-Assessment of the Worlds Most-Used Hash Function, June
2008. http://www.isgtw.org/?pid=1000711.

MW06. Alok Madhukar and Carey Williamson. A Longitudinal Study of P2P
Traffic Classification. Proceedings of the 14th IEEE International
Symposium on Modeling, Analysis, and Simulation, pages 179–188,
September 2006.

Off05. Government Accounting Office. File Sharing Programs: The Use of
Peer-to-Peer Networks to Access Pornography, May 2005.
http://www.gao.gov/new.items/d05634.pdf.

oJ08. United States Department of Justice. RCFL Program Annual Report for
Fiscal Year 2007, 2008.
http://www.rcfl.gov/downloads/documents/RCFL Nat Annual07.pdf.

Owe08. Glen Owen. Taliban Using Skype Phones to Dodge MI6, September 2008.
http://www.dailymail.co.uk/news/worldnews/article-1055611/Taliban-
using-Skype-phones-dodge-MI6.html.

P2P07. P2P Traffic Is Booming, BitTorrent the Dominant Protocol, November
2007. http://torrentfreak.com/p2p-traffic-still-booming-071128/.

Plo00. Dave Plonka. University of Wisconsin-Madison, Napster Traffic
Measurement, March 2000. http://net.doit.wisc.edu/data/Napster/.

Pro06. Rice University WARP Project. Wireless Open-Access Research
Platform, June 2006.
http://warp.rice.edu/trac/browser/PlatformSupport/WARPMAC/
warpmac.c.

Pro08a. Tera Term Pro. Tera Term Pro Terminal Emulator, July 2008.
http://hp.vector.co.jp/authors/VA002416/teraterm.html.

Pro08b. Protocol Obfuscation, May 2008.
http://wiki.emule-web.de/index.php/Protocol obfuscation.

145

RE08. Remote-Exploit. BackTrack, June 2008.
http://www.remote-exploit.org/backtrack download.html.

Rea05. Marguerite Reardon. Ups and Downs of Consumer Broadband, August
2005. http://news.cnet.com/Ups-and-downs-of-consumer-
broadband/2100-1034 3-5810534.html.

RFC94. RFC 1738 - Uniform Resource Locators (URL), December 1994.
http://www.ietf.org/rfc/rfc1738.txt.

RFC99. RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1, June 1999.
http://www.ietf.org/rfc/rfc2616.txt.

RFC01. RFC 3174 - US Secure Hash Algorithm 1 (SHA1), September 2001.
http://www.faqs.org/rfcs/rfc3174.html.

RFC02. RFC 3261 - SIP: Session Initiation Protocol, June 2002.
http://www.faqs.org/rfcs/rfc3261.html.

SGD+02. Stefan Saroiu, Krishna Gummadi, Richard Dunn, Steven Gribble, and
Henry Levy. An Analysis of Internet Content Delivery Systems. ACM
SIGOPS Operating Systems Review, 36:315–327, 2002.

Spe08. Special Applications Port List, May 2008.
http://www.practicallynetworked.com/sharing/app port list.htm.

SSW04. Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. Accurate,
Scalable In-Network Identification of P2P Traffic Using Application
Signatures. Proceedings of the 13th International Conference on World
Wide Web, pages 512–521, May 2004.

Sve07. Peter Svensson. Comcast Blocks Some Internet Traffic, October 2007.
http://www.msnbc.msn.com/id/21376597/.

The06. The ‘One Third of All Internet Traffic’ Myth, September 2006.
http://torrentfreak.com/bittorrent-the-one-third-of-all-internet-traffic-
myth.

The08. The Gnutella Protocol Specification v0.4, May 2008.
www9.limewire.com/developer/gnutella protocol 0.4.pdf.

Tho05. Clive Thompson. The BitTorrent Effect. Wired Magazine, Issue 13.01,
January 2005.

Tri08. Trixbox. Trixbox, an Asterisk-based PBX Phone System, September
2008. http://www.trixbox.org/.

Tys08. Jeff Tyson. How the Old Napster Worked, June 2008.
http://computer.howstuffworks.com/napster2.htm.

Ubi08. Ubiquity. Understanding SIP, July 2008.
http://www.sipcenter.com/sip.nsf/html/WEBB5YNVK8/$File/
Ubiquity SIP Overview.pdf.

146

uTo08. uTorrent. uTorrent - The Lightweight and Efficient BitTorrent Client,
June 2008. http://www.utorrent.com/.

VMW08. VMWare. VMware Player, September 2008.
http://www.vmware.com/products/player/.

Wir08. Wireshark. Wireshark Network Protocol Analyzer, July 2008.
http://www.wireshark.org/.

WMM06. Charles Wright, Fabian Monrose, and Gerald Masson. On Inferring
Application Protocol Behaviors in Encrypted Network Traffic. The
Journal of Machine Learning Research, 7:2745–2769, December 2006.

Xil08a. Xilinx. Virtex-5 Family Overview, August 2008.
http://www.xilinx.com/support/documentation/data sheets/ds100.pdf.

Xil08b. Xilinx. Xilinx University Program Virtex-II Pro Development System,
June 2008. http://www.xilinx.com/products/devkits/XUPV2P.htm.

147

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2009 Master’s Thesis Sept 2007 — Mar 2009

An FPGA-Based System for Tracking Digital Information
Transmitted Via Peer-to-Peer Protocols

ENG09 310

Karl R. Schrader, Maj, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/09-10

Air Force Information Operations Center
Attn: Mr. Robert J. Kaufman
102 Hall Boulevard, Suite 345
San Antonio, TX 78243
(210) 977–5377; robert.kaufman@lackland.af.mil

AFIOC/IO

Approval for public release; distribution is unlimited.

This research addresses the problem of tracking digital information that is shared using peer-to-peer file transfer and
VoIP protocols for the purposes of illicitly disseminating sensitive government information and for covert communication
by terrorist cells or criminal organizations. A digital forensic tool is created that searches a network for peer-to-peer
control messages, extracts the unique identifier of the file or phone number being used, and compares it against a list of
known contraband files or phone numbers. If the identifier is on the list, the control packet is saved for later forensic
analysis. The system is implemented using an FPGA-based embedded software application, and processes file transfers
using the BitTorrent protocol and VoIP phone calls made using the Session Initiation Protocol (SIP). Results show that
the final design processes peer-to-peer packets of interest 92% faster than a software-only configuration, and is able to
successfully capture and process BitTorrent Handshake messages with a probability of at least 99.0% and SIP control
packets with a probability of at least 97.6% under a network traffic load of at least 89.6 Mbps.

computer networks, peer-to-peer networking, information security, criminal investigations, forensic analysis

U U U UU 164

Dr. Barry E. Mullins

(937) 255–3636 x7979; barry.mullins@afit.edu

	Signature 600.PDF
	Page 1

